Advertisement

On Timed Scope-Bounded Context-Sensitive Languages

  • D. Bhave
  • S. N. Krishna
  • R. PhawadeEmail author
  • A. Trivedi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11647)

Abstract

Perfect languages, characterized by closure under Boolean operations and decidable emptiness problem, form the basis for decidable automata-theoretic model-checking for the corresponding class of models. Regular languages and visibly pushdown languages are paradigmatic examples of perfect languages. In a previous work authors have established a timed context-sensitive perfect language characterized by multistack pushdown automata (MPA) with an explicit bound on number of rounds where in each round at most one stack is used. This paper complements the results of on bounded-round timed MPA by characterizing an alternative restriction on timed context-sensitive perfect languages called the scope-bounded multi-stack timed push-down automata where every stack symbol must be popped within a bounded number of stack contexts. The proposed model uses visibly-pushdown alphabet and event clocks to recover a bounded-scope MPA with decidable emptiness, closure under Boolean operations, and an equivalent logical characterization.

References

  1. 1.
    Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-timed pushdown automata. In: Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, pp. 35–44, 25–28 June 2012. IEEE Computer Society. https://doi.org/10.1109/LICS.2012.15
  2. 2.
    Alur, R., Dill, D.: A theory of timed automata. Theoret. Comput. Sci. 126, 183–235 (1994)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990).  https://doi.org/10.1007/BFb0032042CrossRefzbMATHGoogle Scholar
  4. 4.
    Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class of timed automata. Theoret. Comput. Sci. 211(1–2), 253–273 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Babai, L. (ed.) Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, pp. 202–211, 13–16 June 2004. ACM. https://doi.org/10.1145/1007352.1007390
  6. 6.
    Bhave, D., Dave, V., Krishna, S.N., Phawade, R., Trivedi, A.: A logical characterization for dense-time visibly pushdown automata. In: Dediu, A.-H., Janoušek, J., Martín-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 89–101. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30000-9_7CrossRefzbMATHGoogle Scholar
  7. 7.
    Bhave, D., Dave, V., Krishna, S.N., Phawade, R., Trivedi, A.: A perfect class of context-sensitive timed languages. In: Brlek, S., Reutenauer, C. (eds.) DLT 2016. LNCS, vol. 9840, pp. 38–50. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53132-7_4CrossRefGoogle Scholar
  8. 8.
    Bhave, D., Krishna, S.N., Phawade, R., Trivedi, A.: On timed scope-bounded context-sensitive languages. Technical report, IIT Bombay (2019). www.cse.iitb.ac.in/internal/techreports/reports/TR-CSE-2019-77.pdf
  9. 9.
    Bouajjani, A., Echahed, R., Habermehl, P.: On the verification problem of nonregular properties for nonregular processes. In: Proceedings, 10th Annual IEEE Symposium on Logic in Computer Science, San Diego, California, USA, pp. 123–133, 26–29 June 1995. IEEE Computer Society. https://doi.org/10.1109/LICS.1995.523250
  10. 10.
    Droste, M., Perevoshchikov, V.: A logical characterization of timed pushdown languages. In: Beklemishev, L.D., Musatov, D.V. (eds.) CSR 2015. LNCS, vol. 9139, pp. 189–203. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20297-6_13CrossRefGoogle Scholar
  11. 11.
    Esparza, J., Ganty, P., Majumdar, R.: A perfect model for bounded verification. In: Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, pp. 285–294, 25–28 June 2012. https://doi.org/10.1109/LICS.2012.39
  12. 12.
    La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive languages. In: LICS, pp. 161–170 (2007)Google Scholar
  13. 13.
    La Torre, S., Napoli, M., Parlato, G.: Scope-bounded pushdown languages. In: Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 116–128. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09698-8_11CrossRefGoogle Scholar
  14. 14.
    La Torre, S., Napoli, M., Parlato, G.: Scope-bounded pushdown languages. Int. J. Found. Comput. Sci. 27(2), 215–234 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li, G., Cai, X., Ogawa, M., Yuen, S.: Nested timed automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053, pp. 168–182. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40229-6_12CrossRefzbMATHGoogle Scholar
  16. 16.
    Trivedi, A., Wojtczak, D.: Recursive timed automata. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 306–324. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15643-4_23CrossRefGoogle Scholar
  17. 17.
    Van Tang, N., Ogawa, M.: Event-clock visibly pushdown automata. In: Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 558–569. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-95891-8_50CrossRefGoogle Scholar
  18. 18.
    Vardi, M., Wolper, P.: Reasoning about infinite computations. Inform. Comput. 115(1), 1–37 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • D. Bhave
    • 1
  • S. N. Krishna
    • 1
  • R. Phawade
    • 2
    Email author
  • A. Trivedi
    • 3
  1. 1.IIT BombayMumbaiIndia
  2. 2.IIT DharwadDharwadIndia
  3. 3.CU BoulderBoulderUSA

Personalised recommendations