Advertisement

Mechanism and Key Parameters for Catalyst Evaluation

  • Aneeya Kumar Samantara
  • Satyajit Ratha
Chapter
Part of the SpringerBriefs in Materials book series (BRIEFSMATERIALS)

Abstract

Both the hydrogen evolution and oxygen evolution reaction follows a multi electron catalytic path and the mechanism strongly depends on the types of electrolyte used for the electrolysis. Also there are various key parameters available to evaluate the performances of a particular electrocatalyst. In this chapter, detailed discussion on the mechanism of both the HER and OER in acidic and alkaline electrolyte is presented. Moreover, emphasis has been given on the calculation of different key parameters like overpotential, Tafel slope, electrochemical active surface area, Faradic efficiency, Turnover frequency, long cycle life etc. used for efficiency evaluation of a catalyst.

Keywords

Acid electrolyte Alkaline electrolyte Mechanism Overpotential Tafel slope Faradic efficiency ECSA Mass activity Long cycle life 

References

  1. Anantharaj, S., Ede, S. R., Karthick, K., Sam Sankar, S., Sangeetha, K., Karthik, P. E., & Kundu, S. (2018). Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment. Energy & Environmental Science, 11, 744–771.CrossRefGoogle Scholar
  2. Anantharaj, S., Ede, S. R., Sakthikumar, K., Karthick, K., Mishra, S., & Kundu, S. (2016). Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catalysis, 6, 8069–8097.CrossRefGoogle Scholar
  3. Benck, J. D., Hellstern, T. R., Kibsgaard, J., Chakthranont, P., & Jaramillo, T. F. (2014). Catalyzing the Hydrogen Evolution Reaction (HER) with molybdenum sulfide nanomaterials. ACS Catalysis, 4, 3957–3971.CrossRefGoogle Scholar
  4. Betley, T. A., Wu, Q., Van Voorhis, T., & Nocera, D. G. (2008). Electronic design criteria for O−O bond formation via metal−Oxo complexes. Inorganic Chemistry, 47, 1849–1861.CrossRefGoogle Scholar
  5. Bockris, J. O., & Otagawa, T. (1984). The Electrocatalysis of oxygen evolution on Perovskites. Journal of the Electrochemical Society, 131, 290–302.CrossRefGoogle Scholar
  6. Brug, G. J., van den Eeden, A. L. G., Sluyters-Rehbach, M., & Sluyters, J. H. (1984). The analysis of electrode impedances complicated by the presence of a constant phase element. Journal of Electroanalytical Chemistry, 176, 275–295.CrossRefGoogle Scholar
  7. Chen, S., Duan, J., Jaroniec, M., & Qiao, S. Z. (2013). Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angewandte Chemie International Edition, 52, 13567–13570.CrossRefGoogle Scholar
  8. Cooper, K. R., & Smith, M. (2006). Electrical test methods for on-line fuel cell ohmic resistance measurement. Journal of Power Sources, 160, 1088–1095.CrossRefGoogle Scholar
  9. Costentin, C., Drouet, S., Robert, M., & Savéant, J.-M. (2012). Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. Cyclic voltammetry and preparative-scale electrolysis. Journal of the American Chemical Society, 134, 11235–11242.CrossRefGoogle Scholar
  10. Das, J. K., Samantara, A. K., Nayak, A. K., Pradhan, D., & Behera, J. N. (2018). VS2: An efficient catalyst for an electrochemical hydrogen evolution reaction in an acidic medium. Dalton Transactions, 47, 13792–13799.CrossRefGoogle Scholar
  11. De Faria, L. A., Boodts, J. F. C., & Trasatti, S. (1996). Electrocatalytic properties of ternary oxide mixtures of composition Ru0.3Ti(0.7−x)CexO2: Oxygen evolution from acidic solution. Journal of Applied Electrochemistry, 26, 1195–1199.CrossRefGoogle Scholar
  12. Dutta, A., Mutyala, S., Samantara, A. K., Bera, S., Jena, B. K., & Pradhan, N. (2018). Synergistic effect of inactive iron oxide core on active nickel phosphide shell for significant enhancement in oxygen evolution reaction activity. ACS Energy Letters, 3, 141–148.CrossRefGoogle Scholar
  13. Edmonds, T., & McCarroll, J. J. (1978). Impact of surface physics on catalysis. In Gates, B, Knoezinger H (eds.), Topics in surface chemistry (1st ed.). Springer US, Boston, MA, pp 261–290.Google Scholar
  14. Fletcher, S. (2012). Physical electrochemistry. Fundamentals, techniques, and applications by Eliezer Gileadi. Journal of Solid State Electrochemistry, 16, 1301–1301.CrossRefGoogle Scholar
  15. Gao, Q., Zhang, W., Shi, Z., Yang, L., & Tang, Y. (2019). Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution. Advanced Materials, 31, 1802880.CrossRefGoogle Scholar
  16. Gerken, J. B., McAlpin, J. G., Chen, J. Y. C., Rigsby, M. L., Casey, W. H., Britt, R. D., & Stahl, S. S. (2011). Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: The thermodynamic basis for catalyst structure, stability, and activity. Journal of the American Chemical Society, 133, 14431–14442.CrossRefGoogle Scholar
  17. Gong, M., Li, Y., Wang, H., Liang, Y., Wu, J. Z., Zhou, J., Wang, J., Regier, T., Wei, F., & Dai, H. (2013). An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. Journal of the American Chemical Society, 135, 8452–8455.CrossRefGoogle Scholar
  18. Goodenough, J. B., Manoharan, R., & Paranthaman, M. (1990). Surface protonation and electrochemical activity of oxides in aqueous solution. Journal of the American Chemical Society, 112, 2076–2082.CrossRefGoogle Scholar
  19. Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I., & Nørskov, J. K. (2006). Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Materials, 5, 909–913.CrossRefGoogle Scholar
  20. Halck, N. B., Petrykin, V., Krtil, P., & Rossmeisl, J. (2014). Beyond the volcano limitations in electrocatalysis – Oxygen evolution reaction. Physical Chemistry Chemical Physics, 16, 13682–13688.CrossRefGoogle Scholar
  21. Hammer, B. (2006). Special sites at Noble and late transition metal catalysts. Topics in Catalysis, 37, 3–16.CrossRefGoogle Scholar
  22. Haumann, M., Liebisch, P., Müller, C., Barra, M., Grabolle, M., & Dau, H. (2005a). Photosynthetic O2 formation tracked by time-resolved X-ray experiments. Science (80-. ), 310, 1019 LP–1021.CrossRefGoogle Scholar
  23. Haumann, M., Müller, C., Liebisch, P., Iuzzolino, L., Dittmer, J., Grabolle, M., Neisius, T., Meyer-Klaucke, W., & Dau, H. (2005b). Structural and oxidation state changes of the photosystem II Manganese complex in four transitions of the water oxidation cycle (S0 → S1, S1 → S2, S2 → S3, and S3,4 → S0) characterized by X-ray absorption spectroscopy at 20 K and room temperature. Biochemistry, 44, 1894–1908.CrossRefGoogle Scholar
  24. Hibbert, D. B. (1980). The electrochemical evolution of O2 on NiCo2O4 in 18O-enriched KOH. Journal of the Chemical Society, Chemical Communications, 202–203.  https://doi.org/10.1039/C39800000202
  25. Hong, W. T., Risch, M., Stoerzinger, K. A., Grimaud, A., Suntivich, J., & Shao-Horn, Y. (2015). Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy & Environmental Science, 8, 1404–1427.CrossRefGoogle Scholar
  26. Kong, D., Cha, J. J., Wang, H., Lee, H. R., & Cui, Y. (2013). First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy & Environmental Science, 6, 3553–3558.CrossRefGoogle Scholar
  27. Koper, M. T. M., & van Santen, R. A. (1999). Interaction of H, O and OH with metal surfaces. Journal of Electroanalytical Chemistry, 472, 126–136.CrossRefGoogle Scholar
  28. Kosmulski, M. (2009). pH-dependent surface charging and points of zero charge. IV. Update and new approach. Journal of Colloid and Interface Science, 337, 439–448.CrossRefGoogle Scholar
  29. Li, Y., Wang, H., Xie, L., Liang, Y., Hong, G., & Dai, H. (2011). MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 133, 7296–7299.CrossRefGoogle Scholar
  30. Lu, Z., Xu, W., Zhu, W., Yang, Q., Lei, X., Liu, J., Li, Y., Sun, X., & Duan, X. (2014). Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chemical Communications, 50, 6479–6482.CrossRefGoogle Scholar
  31. Ma, T. Y., Dai, S., Jaroniec, M., & Qiao, S. Z. (2014). Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. Journal of the American Chemical Society, 136, 13925–13931.CrossRefGoogle Scholar
  32. Man, I. C., Su, H.-Y., Calle-Vallejo, F., Hansen, H. A., Martínez, J. I., Inoglu, N. G., Kitchin, J., Jaramillo, T. F., Nørskov, J. K., & Rossmeisl, J. (2011). Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem, 3, 1159–1165.CrossRefGoogle Scholar
  33. Mavros, M. G., Tsuchimochi, T., Kowalczyk, T., McIsaac, A., Wang, L.-P., & Van Voorhis, T. (2014). What can density functional theory tell us about artificial catalytic water splitting? Inorganic Chemistry, 53, 6386–6397.CrossRefGoogle Scholar
  34. McCrory, C. C. L., Jung, S., Peters, J. C., & Jaramillo, T. F. (2013). Benchmarking heterogeneous Electrocatalysts for the oxygen evolution reaction. Journal of the American Chemical Society, 135, 16977–16987.CrossRefGoogle Scholar
  35. Merki, D., Fierro, S., Vrubel, H., & Hu, X. (2011). Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chemical Science, 2, 1262–1267.CrossRefGoogle Scholar
  36. Mun, B. S., Watanabe, M., Rossi, M., Stamenkovic, V., Markovic, N. M., & Ross, P. N. (2005). A study of electronic structures of Pt3M (M=Ti,V,Cr,Fe,Co,Ni) polycrystalline alloys with valence-band photoemission spectroscopy. The Journal of Chemical Physics, 123, 204717.CrossRefGoogle Scholar
  37. Noh, J. S., & Schwarz, J. A. (1989). Estimation of the point of zero charge of simple oxides by mass titration. Journal of Colloid and Interface Science, 130, 157–164.CrossRefGoogle Scholar
  38. Nørskov, J. K., Bligaard, T., Logadottir, A., Bahn, S., Hansen, L. B., Bollinger, M., Bengaard, H., Hammer, B., Sljivancanin, Z., Mavrikakis, M., Xu, Y., Dahl, S., & Jacobsen, C. J. H. (2002). Universality in heterogeneous catalysis. Journal of Catalysis, 209, 275–278.CrossRefGoogle Scholar
  39. Nørskov, J. K., Bligaard, T., Logadottir, A., Kitchin, J. R., Chen, J. G., Pandelov, S., & Stimming, U. (2005). Trends in the exchange current for Hydrogen evolution. Journal of the Electrochemical Society, 152, J23–J26.CrossRefGoogle Scholar
  40. Patrick, J. W. (2004). Handbook of fuel cells. Fundamentals technology and applications. Fuel, 83, 623.  https://doi.org/10.1016/j.fuel.2003.09.012.CrossRefGoogle Scholar
  41. Pechenyuk, S. (1999). The use of the pH at the point od zero charge for characterizing the properties of oxide hydroxides. Russian Chemical Bulletin, 48, 1017–1023.CrossRefGoogle Scholar
  42. Rossmeisl, J., Logadottir, A., & Nørskov, J. K. (2005). Electrolysis of water on (oxidized) metal surfaces. Chemical Physics, 319, 178–184.CrossRefGoogle Scholar
  43. Shi, Y., & Zhang, B. (2016). Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 45, 1529–1541.CrossRefGoogle Scholar
  44. Smith, R. D. L., Prévot, M. S., Fagan, R. D., Trudel, S., & Berlinguette, C. P. (2013). Water oxidation catalysis: Electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing Iron, cobalt, and nickel. Journal of the American Chemical Society, 135, 11580–11586.CrossRefGoogle Scholar
  45. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B., & Shao-Horn, Y. (2011). A Perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science (80-. ), 334, 1383 LP–1385.CrossRefGoogle Scholar
  46. Tang, C., Wang, W., Sun, A., Qi, C., Zhang, D., Wu, Z., & Wang, D. (2015). Sulfur-decorated molybdenum carbide catalysts for enhanced Hydrogen evolution. ACS Catalysis, 5, 6956–6963.CrossRefGoogle Scholar
  47. Ting, L. R. L., Deng, Y., Ma, L., Zhang, Y.-J., Peterson, A. A., & Yeo, B. S. (2016). Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction. ACS Catalysis, 6, 861–867.CrossRefGoogle Scholar
  48. Trasatti, S. (1991). Physical electrochemistry of ceramic oxides. Electrochimica Acta, 36, 225–241.CrossRefGoogle Scholar
  49. Wohlfahrt-Mehrens, M., & Heitbaum, J. (1987). Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 237, 251–260.CrossRefGoogle Scholar
  50. Zhang, C., Huang, Y., Yu, Y., Zhang, J., Zhuo, S., & Zhang, B. (2017). Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive {200} facets: A high mass activity and efficient electrocatalyst for the hydrogen evolution reaction. Chemical Science, 8, 2769–2775.CrossRefGoogle Scholar
  51. Zhao, G., Rui, K., Dou, S. X., & Sun, W. (2018). Heterostructures for electrochemical Hydrogen evolution reaction: A review. Advanced Functional Materials, 28, 1803291.CrossRefGoogle Scholar
  52. Zou, X., & Zhang, Y. (2015). Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 44, 5148–5180.CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aneeya Kumar Samantara
    • 1
  • Satyajit Ratha
    • 2
  1. 1.School of Chemical SciencesNational Institute of Science Education and ResearchKhordhaIndia
  2. 2.School of Basic SciencesIndian Institute of TechnologyBhubaneswarIndia

Personalised recommendations