Revision Total Hip Arthroplasty: Epidemiology and Causes

  • Ricardo Fernández-FernándezEmail author
  • Ana Cruz-Pardos
  • Eduardo García-Rey


Failed hip arthroplasty constitutes a high economic burden, with a higher mortality and complication rate than primary total hip arthroplasty (THA). The widespread use of hip replacements in ever-increasing age groups and greater life expectancies contributes to maintaining a revision burden despite improved prostheses and techniques. Registries provide valuable epidemiological data regarding the risks of revision related to patient or implant characteristics. Patient’s age at the time of the prosthetic implantation and diagnosis defines THA survivorship. Male patients with high activity levels are at risk of requiring revision surgery. Improved highly cross-linked polyethylene (HXLPE) implants have a lower wear rate. Hence, this has reduced osteolysis and wear-related revisions, especially in younger patients. Aseptic loosening has become less common than in previous historical series, and other causes have come to account for more than half of the revisions. Dislocation and infection are now the current unsolved issues in THA. Reduced wear has allowed an increase in head size diameter in order to prevent dislocation, but registry data do not support this strategy. The use of dual mobility constructs has become more widespread, yet we need longer follow-up of these designs to analyze survivorship results. Longer life expectancies and the increasing use of uncemented fixation have increased the incidence of periprosthetic fractures. According to registry data, stem revision provides superior results to open reduction and internal fixation (ORIF). Infection is the most devastating complication, and the current standard of care is two-stage revision, though one-stage revision in selected cases may provide better results. Revision THA presents a higher failure rate than primary arthroplasty. Fixation techniques have been improved and aseptic loosening is less frequent. However, dislocation, infection, and periprosthetic fractures continue to compromise long-term survivorship.


Revision hip arthroplasty Survivorship Registry Aseptic loosening Dislocation 


  1. 1.
    Evans JT, Evans JP, Walker RW, Blom AW, Whitehouse MR, Sayers A. How long does a hip replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. Lancet Lond Engl. 2019;393(10172):647–54.CrossRefGoogle Scholar
  2. 2.
    NICE. Overview | Total hip replacement and resurfacing arthroplasty for end-stage arthritis of the hip | Guidance | NICE. London: NICE; 2019. [cited 2019 Apr 27]. Available from Scholar
  3. 3.
    Cnudde P, Bülow E, Nemes S, Tyson Y, Mohaddes M, Rolfson O. Association between patient survival following reoperation after total hip replacement and the reason for reoperation: an analysis of 9,926 patients in the Swedish Hip Arthroplasty Register. Acta Orthop. 2019;90:226–30.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kahlenberg CA, Swarup I, Krell EC, Heinz N, Figgie MP. Causes of revision in young patients undergoing total hip arthroplasty. J Arthroplasty. 2019;34:1435. S0883540319302372 [pii]PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Kurtz S. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89(4):780.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Goldman AH, Sierra RJ, Trousdale RT, Lewallen DG, Berry DJ, Abdel MP. The Lawrence D. Dorr surgical techniques & technologies award: why are contemporary revision total hip arthroplasties failing? An Analysis of 2500 Cases. J Arthroplasty. 2019;34:S11.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Springer BD, Fehring TK, Griffin WL, Odum SM, Masonis JL. Why revision total hip arthroplasty fails. Clin Orthop. 2009;467(1):166–73.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Cherian JJ, Jauregui JJ, Banerjee S, Pierce T, Mont MA. What host factors affect aseptic loosening after THA and TKA? Clin Orthop Relat Res. 2015;473(8):2700–9.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Gwam CU, Mistry JB, Mohamed NS, Thomas M, Bigart KC, Mont MA, et al. Current epidemiology of revision total hip arthroplasty in the United States: national inpatient sample 2009 to 2013. J Arthroplasty. 2017;32(7):2088–92.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Paxton EW, Cafri G, Nemes S, Lorimer M, Kärrholm J, Malchau H, et al. An international comparison of THA patients, implants, techniques, and survivorship in Sweden, Australia, and the United States. Acta Orthop. 2019;90(2):148–52.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Berry DJ, Harmsen WS, Cabanela ME, Morrey BF. Twenty-five-year survivorship of two thousand consecutive primary Charnley total hip replacements: factors affecting survivorship of acetabular and femoral components. J Bone Joint Surg Am. 2002;84-A(2):171–7.CrossRefGoogle Scholar
  12. 12.
    Labek G, Neumann D, Agreiter M, Schuh R, Böhler N. Impact of implant developers on published outcome and reproducibility of cohort-based clinical studies in arthroplasty. J Bone Joint Surg Am. 2011;93(Suppl 3):55–61.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Lübbeke A, Silman AJ, Barea C, Prieto-Alhambra D, Carr AJ. Mapping existing hip and knee replacement registries in Europe. Health Policy. 2018;122(5):548–57.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Danish Orthopaedic Society. Annual reports – The Danish Hip Arthroplasty register. Lyngskrænten: Danish Orthopaedic Society; 2019. [cited 2019 Apr 29]. Available from Scholar
  15. 15.
    Svenska Höftprotesregistret. Annual reports. Göteborg: Svenska Höftprotesregistret; 2019. [cited 2019 Apr 29]. Available from Scholar
  16. 16.
    Hughes RE, Batra A, Hallstrom BR. Arthroplasty registries around the world: valuable sources of hip implant revision risk data. Curr Rev Musculoskelet Med. 2017;10(2):240–52.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Mäkelä KT, Matilainen M, Pulkkinen P, Fenstad AM, Havelin LI, Engesaeter L, et al. Countrywise results of total hip replacement. An analysis of 438,733 hips based on the Nordic Arthroplasty Register Association database. Acta Orthop. 2014;85(2):107–16.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Finnish Arthroplasty Registry (FAR). Annual reports. Helsinki: FAR; 2019. [cited 2019 Apr 29]. Available from Scholar
  19. 19.
    Delaunay C. Registries in orthopaedics. Orthop Traumatol Surg Res. 2015;101(1):S69–75.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Nasjonalt Servicemiljø for Medisinske Kvalitetsregistre. Annual reports. Trondheim: Nasjonalt Servicemiljø for Medisinske Kvalitetsregistre; 2019. [cited 2019 Apr 29]. Available from Scholar
  21. 21.
    Australian Orthopaedic Association National Joint Replacement Registry. Annual reports. Adelaide, SA: AOANJRR; 2019. [cited 2019 Apr 29]. Available from Scholar
  22. 22.
    Bayliss LE, Culliford D, Monk AP, Glyn-Jones S, Prieto-Alhambra D, Judge A, et al. The effect of patient age at intervention on risk of implant revision after total replacement of the hip or knee: a population-based cohort study. Lancet Lond Engl. 2017;389(10077):1424–30.CrossRefGoogle Scholar
  23. 23.
    Anand R, Graves SE, de Steiger RN, Davidson DC, Ryan P, Miller LN, et al. What is the benefit of introducing new hip and knee prostheses? J Bone Joint Surg Am. 2011;93(Suppl 3):51–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Kowalik TD, DeHart M, Gehling H, Gehling P, Schabel K, Duwelius P, et al. The epidemiology of primary and revision total hip arthroplasty in teaching and nonteaching hospitals in the United States. J Am Acad Orthop Surg. 2016;24(6):393–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Cnudde P, Nemes S, Bülow E, Timperley J, Malchau H, Kärrholm J, et al. Trends in hip replacements between 1999 and 2012 in Sweden. J Orthop Res. 2018;36:432. [cited 2019 May 2]. Available from PubMedGoogle Scholar
  26. 26.
    Pandya NK, Wustrack R, Metz L, Ward D. Current concepts in orthopaedic care disparities. J Am Acad Orthop Surg. 2018;26(23):823–32.PubMedCrossRefGoogle Scholar
  27. 27.
    NJR. 15th Annual report 2018. Hemel Hempstead: NJR; 2018. Available from: Scholar
  28. 28.
    Heckmann N, Ihn H, Stefl M, Etkin CD, Springer BD, Berry DJ, et al. Early results from the American joint replacement registry: a comparison with other national registries. J Arthroplasty. 2019;34:S125. S0883540318312282 [pii]PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Jiang Y, Jia T, Wooley PH, Yang S-Y. Current research in the pathogenesis of aseptic implant loosening associated with particulate wear debris. Acta Orthop Belg. 2013;79(1):1–9.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Stambough JB, Rames RD, Pashos GE, Maloney WJ, Martell JM, Clohisy JC. Conventional polyethylene in total hip arthroplasty in young patients: survivorship, wear analysis, and clinical outcomes between 15 and 20 years. J Arthroplasty. 2018;33(12):3712–8.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Ranawat CS, Ranawat AS, Ramteke AA, Nawabi D, Meftah M. Long-term results of a first-generation annealed highly cross-linked polyethylene in young, active patients. Orthopedics. 2016;39(2):e225–9.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Bryan AJ, Calkins TE, Karas V, Culvern C, Nam D, Della Valle CJ. Primary total hip arthroplasty in patients less than 50 years of age at a mean of 16 years: highly crosslinked polyethylene significantly reduces the risk of revision. J Arthroplasty. 2019;34:S238. S0883540319301810 [pii]PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Kuzyk PRT, Dhotar HS, Sternheim A, Gross AE, Safir O, Backstein D. Two-stage revision arthroplasty for management of chronic periprosthetic hip and knee infection: techniques, controversies, and outcomes. J Am Acad Orthop Surg. 2014;22(3):153–64.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    McAlister IP, Perry KI, Mara KC, Hanssen AD, Berry DJ, Abdel MP. Two-stage revision of total hip arthroplasty for infection is associated with a high rate of dislocation. J Bone Joint Surg Am. 2019;101(4):322–9.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Reina N, Pareek A, Krych AJ, Pagnano MW, Berry DJ, Abdel MP. Dual-mobility constructs in primary and revision total hip arthroplasty: a systematic review of comparative studies. J Arthroplasty. 2019;34(3):594–603.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Norambuena GA, Wyles CC, Van Demark RE, Trousdale RT. Effect of dislocation timing following primary total hip arthroplasty on the risk of redislocation and revision. Hip Int J Clin Exp Res Hip Pathol Ther. 2019;11:1120700019828144.Google Scholar
  37. 37.
    Lovell TP. Single-incision direct anterior approach for total hip arthroplasty using a standard operating table. J Arthroplasty. 2008;23(7 Suppl):64–8.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Berend KR, Mirza AJ, Morris MJ, Lombardi AV. Risk of periprosthetic fractures with direct anterior primary total hip arthroplasty. J Arthroplasty. 2016;31(10):2295–8.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Meneghini RM, Elston AS, Chen AF, Kheir MM, Fehring TK, Springer BD. Direct anterior approach: risk factor for early femoral failure of cementless total hip arthroplasty. J Bone Joint Surg. 2017;99(2):99–105.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Carli A, Politis A, Zukor D, Huk O, Antoniou J. Clinically significant corrosion at the head-neck taper interface in total hip arthroplasty: a systematic review and case series. Hip Int. 2015;25(1):7–14.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Tsikandylakis G, Kärrholm J, Hailer NP, Eskelinen A, Mäkelä KT, Hallan G, et al. No increase in survival for 36-mm versus 32-mm femoral heads in metal-on-polyethylene THA: a registry study. Clin Orthop. 2018;476(12):2367–78.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Malkani AL, Himschoot KJ, Ong KL, Lau EC, Baykal D, Dimar JR, et al. Does timing of primary total hip arthroplasty prior to or after lumbar spine fusion have an effect on dislocation and revision rates? J Arthroplasty. 2019;34(5):907–11.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Lindahl H, Malchau H, Herberts P, Garellick G. Periprosthetic femoral fractures. J Arthroplasty. 2005;20(7):857–65.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Duncan CP, Masri BA. Fractures of the femur after hip replacement. Instr Course Lect. 1995;44:293–304.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Kavanagh BF. Femoral fractures associated with total hip arthroplasty. Orthop Clin North Am. 1992;23(2):249–57.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Chatziagorou G, Lindahl H, Kärrholm J. The design of the cemented stem influences the risk of Vancouver type B fractures, but not of type C: an analysis of 82,837 Lubinus SPII and Exeter Polished stems. Acta Orthop. 2019;90(2):135–42.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Carli AV, Negus JJ, Haddad FS. Periprosthetic femoral fractures and trying to avoid them: what is the contribution of femoral component design to the increased risk of periprosthetic femoral fracture? Bone Joint J. 2017;99-B(1 Supple A):50–9.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Pavone V, de Cristo C, Di Stefano A, Costarella L, Testa G, Sessa G. Periprosthetic femoral fractures after total hip arthroplasty: an algorithm of treatment. Injury. 2019;50:S45.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Lindahl H, Malchau H, Odén A, Garellick G. Risk factors for failure after treatment of a periprosthetic fracture of the femur. J Bone Joint Surg Br. 2006;88-B(1):26–30.CrossRefGoogle Scholar
  50. 50.
    Corten K, Vanrykel F, Bellemans J, Frederix PR, Simon J-P, Broos PLO. An algorithm for the surgical treatment of periprosthetic fractures of the femur around a well-fixed femoral component. J Bone Joint Surg Br. 2009;91-B(11):1424–30.CrossRefGoogle Scholar
  51. 51.
    Giaretta S, Momoli A, Porcelli G, Micheloni GM. Diagnosis and management of periprosthetic femoral fractures after hip arthroplasty. Injury. 2019;50:S29. S0020138319300531 [pii]PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Ong KL, Kurtz SM, Lau E, Bozic KJ, Berry DJ, Parvizi J. Prosthetic joint infection risk after total hip arthroplasty in the Medicare population. J Arthroplasty. 2009;24(6 Suppl):105–9.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Parvizi J, Zmistowski B, Berbari EF, Bauer TW, Springer BD, Della Valle CJ, et al. New definition for periprosthetic joint infection: from the Workgroup of the Musculoskeletal Infection Society. Clin Orthop. 2011;469(11):2992–4.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Huerfano E, Bautista M, Huerfano M, Bonilla G, Llinas A. Screening for infection before revision hip arthroplasty: a meta-analysis of likelihood ratios of erythrocyte sedimentation rate and serum C-reactive protein levels. J Am Acad Orthop Surg. 2017;25(12):809–17.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Zagra L, Villa F, Cappelletti L, Gallazzi E, Materazzi G, De Vecchi E. Can leucocyte esterase replace frozen sections in the intraoperative diagnosis of prosthetic hip infection? Bone Joint J. 2019;101-B(4):372–7.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Nguyen M, Sukeik M, Zahar A, Nizam I, Haddad FS. One-stage exchange arthroplasty for periprosthetic hip and knee joint infections. Open Orthop J. 2016;10:646–53.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Zimmerli W. Prosthetic-joint infections. N Engl J Med. 2004;351:1645.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Svensson K, Rolfson O, Kärrholm J, Mohaddes M, et al. J Clin Med. 2019;8(4):485.PubMedCentralCrossRefGoogle Scholar
  59. 59.
    Vendittoli P-A, Massé V, Kiss M-O, Lusignan D, Lavigne M. Modular junction may be more problematic than bearing wear in metal-on-metal total hip arthroplasty. Hip Int J Clin Exp Res Hip Pathol Ther. 2019;29(3):262–9.Google Scholar
  60. 60.
    Koff MF, Esposito C, Shah P, Miranda M, Baral E, Fields K, et al. MRI of THA Correlates with implant wear and tissue reactions: a cross-sectional study. Clin Orthop. 2019;477(1):159–74.PubMedCrossRefGoogle Scholar
  61. 61.
    Grammatopoulos G, Grammatopolous G, Pandit H, Kwon Y-M, Gundle R, McLardy-Smith P, et al. Hip resurfacings revised for inflammatory pseudotumour have a poor outcome. J Bone Joint Surg Br. 2009;91(8):1019–24.PubMedCrossRefGoogle Scholar
  62. 62.
    Porter DA, Urban RM, Jacobs JJ, Gilbert JL, Rodriguez JA, Cooper HJ. Modern trunnions are more flexible: a mechanical analysis of THA taper designs. Clin Orthop. 2014;472(12):3963–70.PubMedCrossRefGoogle Scholar
  63. 63.
    Meftah M, Haleem AM, Burn MB, Smith KM, Incavo SJ. Early corrosion-related failure of the rejuvenate modular total hip replacement. J Bone Joint Surg Am. 2014;96(6):481–7.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Della Valle CJ, Calkins TE, Jacobs JJ. Diagnosing taper corrosion: when is it the taper and when is it something else? J Arthroplasty. 2018;33(9):2712–5.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Fink B. What can the surgeon do to reduce the risk of junction breakage in modular revision stems? Arthroplasty Today. 2018;4(3):306–9.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Jeffers JRT, Walter WL. Ceramic-on-ceramic bearings in hip arthroplasty: state of the art and the future. J Bone Joint Surg Br. 2012;94-B(6):735–45.CrossRefGoogle Scholar
  67. 67.
    Im C, Lee K-J, Min B-W, Bae K-C, Lee S-W, Sohn H-J. Revision total hip arthroplasty after ceramic bearing fractures in patients under 60-years old: mid-term results. Hip Pelvis. 2018;30(3):156–61.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ricardo Fernández-Fernández
    • 1
    Email author
  • Ana Cruz-Pardos
    • 1
  • Eduardo García-Rey
    • 1
  1. 1.Department of Orthopedic Surgery“La Paz” University HospitalMadridSpain

Personalised recommendations