Advertisement

How to Morph a Tree on a Small Grid

  • Fidel Barrera-Cruz
  • Manuel Borrazzo
  • Giordano Da LozzoEmail author
  • Giuseppe Di Battista
  • Fabrizio Frati
  • Maurizio Patrignani
  • Vincenzo Roselli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11646)

Abstract

In this paper we study planar morphs between straight-line planar grid drawings of trees. A morph consists of a sequence of morphing steps, where in a morphing step vertices move along straight-line trajectories at constant speed. We show how to construct planar morphs that simultaneously achieve a reduced number of morphing steps and a polynomially-bounded resolution. We assume that both the initial and final drawings lie on the grid and we ensure that each morphing step produces a grid drawing; further, we consider both upward drawings of rooted trees and drawings of arbitrary trees.

References

  1. 1.
    Alamdari, S., et al.: How to morph planar graph drawings. SIAM J. Comput. 46(2), 824–852 (2017).  https://doi.org/10.1137/16M1069171MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alamdari, S., et al.: Morphing planar graph drawings with a polynomial number of steps. In: Khanna, S. (ed.) Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, 6–8 January 2013, pp. 1656–1667. SIAM (2013).  https://doi.org/10.1137/1.9781611973105.119
  3. 3.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Roselli, V.: Morphing planar graph drawings optimally. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 126–137. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43948-7_11CrossRefGoogle Scholar
  4. 4.
    Angelini, P., Da Lozzo, G., Frati, F., Lubiw, A., Patrignani, M., Roselli, V.: Optimal morphs of convex drawings. In: Symposium on Computational Geometry. LIPIcs, vol. 34, pp. 126–140. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  5. 5.
    Angelini, P., Frati, F., Patrignani, M., Roselli, V.: Morphing planar graph drawings efficiently. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 49–60. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-03841-4_5CrossRefzbMATHGoogle Scholar
  6. 6.
    Barrera-Cruz, F., Haxell, P., Lubiw, A.: Morphing schnyder drawings of planar triangulations. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 294–305. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45803-7_25CrossRefGoogle Scholar
  7. 7.
    Biedl, T.C., Lubiw, A., Petrick, M., Spriggs, M.J.: Morphing orthogonal planar graph drawings. ACM Trans. Algorithms 9(4), 29:1–29:24 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cairns, S.S.: Deformations of plane rectilinear complexes. Am. Math. Monthly 51(5), 247–252 (1944)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chambers, E.W., Eppstein, D., Goodrich, M.T., Löffler, M.: Drawing graphs in the plane with a prescribed outer face and polynomial area. J. Graph Algorithms Appl. 16(2), 243–259 (2012).  https://doi.org/10.7155/jgaa.00257MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Roselli, V.: Upward planar morphs. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 92–105. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-04414-5_7CrossRefGoogle Scholar
  11. 11.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Upper Saddle River (1999)zbMATHGoogle Scholar
  12. 12.
    van Goethem, A., Verbeek, K.: Optimal morphs of planar orthogonal drawings. In: Speckmann, B., Tóth, C.D. (eds.) 34th International Symposium on Computational Geometry, SoCG 2018, 11–14 June 2018, Budapest, Hungary. LIPIcs, vol. 99, pp. 42:1–42:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018).  https://doi.org/10.4230/LIPIcs.SoCG.2018.42
  13. 13.
    Thomassen, C.: Deformations of plane graphs. J. Combin. Theory Ser. B 34(3), 244–257 (1983)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fidel Barrera-Cruz
    • 1
  • Manuel Borrazzo
    • 2
  • Giordano Da Lozzo
    • 2
    Email author
  • Giuseppe Di Battista
    • 2
  • Fabrizio Frati
    • 2
  • Maurizio Patrignani
    • 2
  • Vincenzo Roselli
    • 2
  1. 1.SunnyvaleUSA
  2. 2.Roma Tre UniversityRomeItaly

Personalised recommendations