How to Morph a Tree on a Small Grid

  • Fidel Barrera-Cruz
  • Manuel Borrazzo
  • Giordano Da LozzoEmail author
  • Giuseppe Di Battista
  • Fabrizio Frati
  • Maurizio Patrignani
  • Vincenzo Roselli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11646)


In this paper we study planar morphs between straight-line planar grid drawings of trees. A morph consists of a sequence of morphing steps, where in a morphing step vertices move along straight-line trajectories at constant speed. We show how to construct planar morphs that simultaneously achieve a reduced number of morphing steps and a polynomially-bounded resolution. We assume that both the initial and final drawings lie on the grid and we ensure that each morphing step produces a grid drawing; further, we consider both upward drawings of rooted trees and drawings of arbitrary trees.


  1. 1.
    Alamdari, S., et al.: How to morph planar graph drawings. SIAM J. Comput. 46(2), 824–852 (2017). Scholar
  2. 2.
    Alamdari, S., et al.: Morphing planar graph drawings with a polynomial number of steps. In: Khanna, S. (ed.) Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, 6–8 January 2013, pp. 1656–1667. SIAM (2013).
  3. 3.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Roselli, V.: Morphing planar graph drawings optimally. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 126–137. Springer, Heidelberg (2014). Scholar
  4. 4.
    Angelini, P., Da Lozzo, G., Frati, F., Lubiw, A., Patrignani, M., Roselli, V.: Optimal morphs of convex drawings. In: Symposium on Computational Geometry. LIPIcs, vol. 34, pp. 126–140. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  5. 5.
    Angelini, P., Frati, F., Patrignani, M., Roselli, V.: Morphing planar graph drawings efficiently. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 49–60. Springer, Cham (2013). Scholar
  6. 6.
    Barrera-Cruz, F., Haxell, P., Lubiw, A.: Morphing schnyder drawings of planar triangulations. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 294–305. Springer, Heidelberg (2014). Scholar
  7. 7.
    Biedl, T.C., Lubiw, A., Petrick, M., Spriggs, M.J.: Morphing orthogonal planar graph drawings. ACM Trans. Algorithms 9(4), 29:1–29:24 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cairns, S.S.: Deformations of plane rectilinear complexes. Am. Math. Monthly 51(5), 247–252 (1944)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chambers, E.W., Eppstein, D., Goodrich, M.T., Löffler, M.: Drawing graphs in the plane with a prescribed outer face and polynomial area. J. Graph Algorithms Appl. 16(2), 243–259 (2012). Scholar
  10. 10.
    Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Roselli, V.: Upward planar morphs. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 92–105. Springer, Cham (2018). Scholar
  11. 11.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Upper Saddle River (1999)zbMATHGoogle Scholar
  12. 12.
    van Goethem, A., Verbeek, K.: Optimal morphs of planar orthogonal drawings. In: Speckmann, B., Tóth, C.D. (eds.) 34th International Symposium on Computational Geometry, SoCG 2018, 11–14 June 2018, Budapest, Hungary. LIPIcs, vol. 99, pp. 42:1–42:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018).
  13. 13.
    Thomassen, C.: Deformations of plane graphs. J. Combin. Theory Ser. B 34(3), 244–257 (1983)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fidel Barrera-Cruz
    • 1
  • Manuel Borrazzo
    • 2
  • Giordano Da Lozzo
    • 2
    Email author
  • Giuseppe Di Battista
    • 2
  • Fabrizio Frati
    • 2
  • Maurizio Patrignani
    • 2
  • Vincenzo Roselli
    • 2
  1. 1.SunnyvaleUSA
  2. 2.Roma Tre UniversityRomeItaly

Personalised recommendations