Advertisement

Most Vital Segment Barriers

  • Irina Kostitsyna
  • Maarten Löffler
  • Valentin Polishchuk
  • Frank StaalsEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11646)

Abstract

We study continuous analogues of “vitality” for discrete network flows/paths, and consider problems related to placing segment barriers that have highest impact on a flow/path in a polygonal domain. This extends the graph-theoretic notion of “most vital arcs” for flows/paths to geometric environments. We give hardness results and efficient algorithms for various versions of the problem, (almost) completely separating hard and polynomially-solvable cases.

Keywords

Simple polygon Geodesic distance Flows and paths 

Notes

Acknowledgements

M.L. and F.S. were partially supported by the Netherlands Organisation for Scientific Research (NWO) through project no 614.001.504 and 612.001.651, respectively.

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Upper Saddle River (1993)zbMATHGoogle Scholar
  2. 2.
    Alderson, D.L., Brown, G.G., Carlyle, W.M., Cox Jr., L.A.: Sometimes there is no most-vital arc: assessing and improving the operational resilience of systems. Technical report, Naval Postgraduate School Monterey CA (2013)Google Scholar
  3. 3.
    Ball, M.O., Golden, B.L., Vohra, R.V.: Finding the most vital arcs in a network. Oper. Res. Lett. 8(2), 73–76 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bazgan, C., Nichterlein, A., Niedermeier, R.: A refined complexity analysis of finding the most vital edges for undirected shortest paths. In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 47–60. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18173-8_3zbMATHCrossRefGoogle Scholar
  5. 5.
    Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6(5), 485–524 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chin, F., Snoeyink, J., Wang, C.A.: Finding the medial axis of a simple polygon in linear time. Discrete Comput. Geom. 21(3), 405–420 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Citovsky, G., Mayer, T., Mitchell, J.S.B.: TSP with locational uncertainty: the adversarial model. In: 33rd International Symposium on Computational Geometry. Leibniz International Proceedings in Informatics (LIPIcs), vol. 77, pp. 32:1–32:16. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)Google Scholar
  8. 8.
    Collado, R.A., Papp, D.: Network interdiction-models, applications, unexplored directions. Rutcor Research Report, RRR4, Rutgers University, New Brunswick, NJ (2012)Google Scholar
  9. 9.
    Eriksson-Bique, S., Polishchuk, V., Sysikaski, M.: Optimal geometric flows via dual programs. In: Proceedings of the Thirtieth Annual Symposium on Computational Geometry, p. 100. ACM (2014)Google Scholar
  10. 10.
    Gewali, L., Meng, A., Mitchell, J.S.B., Ntafos, S.: Path planning in \(0/1/\infty \) weighted regions with applications. ORSA J. Comput. 2(3), 253–272 (1990)zbMATHGoogle Scholar
  11. 11.
    Golden, B.: A problem in network interdiction. Naval Research Logistics (NRL) 25(4), 711–713 (1978)zbMATHCrossRefGoogle Scholar
  12. 12.
    Guibas, L.J., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2, 209–233 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Guo, Q., An, B., Tran-Thanh, L.: Playing repeated network interdiction games with semi-bandit feedback. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 3682–3690. AAAI Press (2017)Google Scholar
  14. 14.
    Kim, D.S.: Polygon offsetting using a voronoi diagram and two stacks. Comput. Aided Des. 30(14), 1069–1076 (1998)zbMATHCrossRefGoogle Scholar
  15. 15.
    Kostitsyna, I., Löffler, M., Staals, F., Polishchuk, V.: Most vital segment barriers. CoRR abs/1905.01185 (2019)Google Scholar
  16. 16.
    Lin, K.C., Chern, M.S.: Finding the most vital arc in the shortest path problem with fuzzy arc lengths. In: Tzeng, G.H., Wang, H.F., Wen, U.P., Yu, P.L. (eds.) Multiple Criteria Decision Making, pp. 159–168. Springer, New York (1994).  https://doi.org/10.1007/978-1-4612-2666-6_17CrossRefGoogle Scholar
  17. 17.
    Löffler, M.: Existence and computation of tours through imprecise points. Int. J. Comput. Geom. Appl. 21(1), 1–24 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Lubore, S.H., Ratliff, H., Sicilia, G.: Determining the most vital link in a flow network. Naval Research Logistics (NRL) 18(4), 497–502 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Melissaratos, E.A., Souvaine, D.L.: Shortest paths help solve geometric optimization problems in planar regions. SIAM J. Comput. 21(4), 601–638 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier, Amsterdam (2000)CrossRefGoogle Scholar
  21. 21.
    Mitchell, J.S.: On maximum flows in polyhedral domains. J. Comput. Syst. Sci. 40(1), 88–123 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Nardelli, E., Proietti, G., Widmayer, P.: A faster computation of the most vital edge of a shortest path. Inf. Process. Lett. 79(2), 81–85 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Neumayer, S., Efrat, A., Modiano, E.: Geographic max-flow and min-cut under a circular disk failure model. Comput. Netw. 77, 117–127 (2015)CrossRefGoogle Scholar
  24. 24.
    Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP 1989. LNCS, vol. 372, pp. 610–620. Springer, Heidelberg (1989).  https://doi.org/10.1007/BFb0035787CrossRefGoogle Scholar
  25. 25.
    Polishchuk, V., Mitchell, J.S.: Thick non-crossing paths and minimum-cost flows in polygonal domains. In: Proceedings of the Twenty-Third Annual Symposium on Computational Geometry, SCG 2007, pp. 56–65. ACM (2007)Google Scholar
  26. 26.
    Pollack, R., Sharir, M., Rote, G.: Computing the geodesic center of a simple polygon. Discrete Comput. Geom. 4(6), 611–626 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Ratliff, H.D., Sicilia, G.T., Lubore, S.: Finding the n most vital links in flow networks. Manage. Sci. 21(5), 531–539 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Smith, J.C., Prince, M., Geunes, J.: Modern network interdiction problems and algorithms. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 1949–1987. Springer, New York (2013).  https://doi.org/10.1007/978-1-4419-7997-1_61CrossRefGoogle Scholar
  29. 29.
    Strang, G.: Maximal flow through a domain. Math. Program. 26, 123–143 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Zhang, P., Fan, N.: Analysis of budget for interdiction on multicommodity network flows. J. Global Optim. 67(3), 495–525 (2017)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Irina Kostitsyna
    • 1
  • Maarten Löffler
    • 2
  • Valentin Polishchuk
    • 3
  • Frank Staals
    • 2
    Email author
  1. 1.Department of Mathematics and Computer ScienceTU EindhovenEindhovenThe Netherlands
  2. 2.Department of Information and Computing SciencesUtrecht UniversityUtrechtThe Netherlands
  3. 3.Communications and Transport Systems, ITNLinköping UniversityLinköpingSweden

Personalised recommendations