Young Age and Breast Cancer Biology

  • Hamdy A. Azim
  • Bastien Nguyen
  • Hatem A. AzimJr


Several studies have shown that breast cancer arising at young age is associated with worse prognosis. Mounting evidence suggests that they are enriched with more aggressive breast cancer subtypes, notably triple-negative or basal-like tumors. However, this does not appear to explain fully the worse outcomes observed in these patients. Recent studies have also pointed out that outcomes are particularly poorer in patients with estrogen receptor-positive tumors underscoring the potential impact of the endocrine microenvironment, which is predominantly different in young patients, on the biology and nature of these tumors. In this chapter, we discuss key major biological aberrations that characterize breast cancer that arises at young age and their potential clinical implications.


  1. 1.
    Azim HA Jr, Partrdige AH. Biology of breast cancer in young women. Breast Cancer Res. 2014;16(4):427.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Gnerlich JL, Deshpande AD, Jeffe DB, Sweet A, White N, Margenthaler JA. Elevated breast cancer mortality in women younger than age 40 years compared with older women is attributed to poorer survival in early-stage disease. J Am CollSurg. 2009;208(3):341–7.Google Scholar
  3. 3.
    Han W, Kang SY, Korean Breast Cancer Society. Relationship between age at diagnosis and outcome of premenopausal breast cancer: age less than 35 years is a reasonable cut-off for defining young age-onset breast cancer. Breast Cancer Res Treat. 2010;119(1):193–200.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Azim HA Jr, Michiels S, Bedard PL, Singhal SK, Criscitiello C, Ignatiadis M, et al. Elucidating prognosis and biology of breast cancer arising in young women using gene expression profiling. Clin Cancer Res. 2012;18(5):1341–51.PubMedCrossRefGoogle Scholar
  5. 5.
    Fredholm H, Eaker S, Frisell J, Holmberg L, Fredriksson I, Lindman H. Breast cancer in young women: poor survival despite intensive treatment. PLoS One. 2009;4(11):1–9.CrossRefGoogle Scholar
  6. 6.
    Cancello G, Maisonneuve P, Rotmensz N, Viale G, Mastropasqua MG, Pruneri G, et al. Prognosis and adjuvant treatment effects in selected breast cancer subtypes of very young women (<35 years) with operable breast cancer. Ann Oncol. 2010;21(10):1974–81.PubMedCrossRefGoogle Scholar
  7. 7.
    Partridge AH, Hughes ME, Warner ET, Ottesen RA, Wong YN, Edge SB, et al. Subtype-dependent relationship between young age at diagnosis and breast cancer survival. J ClinOncol. 2016;34(27):3308–14.CrossRefGoogle Scholar
  8. 8.
    Anders CK, Hsu DS, Broadwater G, Acharya CR, Foekens JA, Zhang Y, et al. Young age at diagnosis correlates with worse prognosis and defines a subset of breast cancers with shared patterns of gene expression. J ClinOncol. 2008;26(20):3324–30.CrossRefGoogle Scholar
  9. 9.
    Walker RA, Lees E, Webb MB, Dearing SJ. Breast carcinomas occurring in young women (< 35 years) are different. Br J Cancer. 1996;74(11):1796–800.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Colleoni M, Rotmensz N, Robertson C, Orlando L, Viale G, Renne G, et al. Very young women (<35 years) with operable breast cancer: features of disease at presentation. Ann Oncol. 2002;13(2):273–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Azim HA Jr, Nguyen B, Brohée S, Zoppoli G, Sotiriou C. Genomic aberrations in young and elderly breast cancer patients. BMC Med. 2015;13(1):266.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Azim HA Jr, Azim H. Breast cancer arising at a young age: do we need to define a cut-off? Breast. 2013;22(6):1007–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Jenkins EO, Deal AM, Anders CK, Prat A, Perou CM, Carey LA, et al. Age-specific changes in intrinsic breast cancer subtypes: afocus on older women. Oncologist. 2014;19(10):1076–83.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med. 2009;15(8):907–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Huzarski T, Byrski T, Gronwald J, Górski B, Domagala P, Cybulski C, et al. Ten-year survival in patients with BRCA1-negative and BRCA1-positive breast cancer. J ClinOncol. 2013;31(26):3191–6.CrossRefGoogle Scholar
  16. 16.
    Young S, Pilarski RT, Donenberg T, Shapiro C, Hammond LS, Miller J, et al. The prevalence of BRCA1 mutations among young women with triple-negative breast cancer. BMC Cancer. 2009;9(1):86.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kim JB, Stein R, O’Hare MJ. Tumour-stromal interactions in breast cancer: the role of stroma in tumourigenesis. Tumor Biol. 2005;26(4):173–85.CrossRefGoogle Scholar
  18. 18.
    Bhowmick NA, Moses HL. Tumor–stroma interactions. CurrOpin Genet Dev. 2005;15(1):97–101.CrossRefGoogle Scholar
  19. 19.
    McDaniel SM, Rumer KK, Biroc SL, Metz RP, Singh M, Porter W, et al. Remodeling of the mammary microenvironment after lactation promotes breast tumor cell metastasis. Am J Pathol. 2006;168(2):608–20.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Easton DF. How many more breast cancer predisposition genes are there? Breast Cancer Res. 1999;1(1):14–7.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Moynahan ME, Chiu JW, Koller BH, Jasin M. Brca1 controls homology-directed DNA repair. Mol Cell. 1999;4(4):511–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Burke W, Daly M, Garber J, Botkin J, Kahn MJ, Lynch P, et al. Recommendations for follow-up care of individuals with an inherited predisposition to cancer. II. BRCA1 and BRCA2. Cancer Genetics Studies Consortium. JAMA. 1997;277(12):997–1003.PubMedCrossRefGoogle Scholar
  23. 23.
    Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips K-A, Mooij TM, Roos-Blom M-J, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2mutation carriers. JAMA. 2017;317(23):2402.PubMedCrossRefGoogle Scholar
  24. 24.
    NCCN Guidelines Version 2.2017 Hereditary Breast and/or Ovarian Cancer Syndrome. [cited 2017 Nov 8].
  25. 25.
    Rosenberg SM, Ruddy KJ, Tamimi RM, Gelber S, Schapira L, Come S, et al. BRCA1 and BRCA2mutation testing in young women with breast cancer. JAMA Oncol. 2016;2(6):730.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Bai F, Chan HL, Scott A, Smith MD, Fan C, Herschkowitz JI, et al. BRCA1 suppresses epithelial-to-mesenchymal transition and stem cell dedifferentiation during mammary and tumor development. Cancer Res. 2014;74(21):6161–72.PubMedCrossRefGoogle Scholar
  27. 27.
    Ma Y, Katiyar P, Jones LP, Fan S, Zhang Y, Furth PA, et al. The breast cancer susceptibility gene BRCA1 regulates progesterone receptor signaling in mammary epithelial cells. MolEndocrinol. 2006;20(1):14–34.Google Scholar
  28. 28.
    Metcalfe K, Lynch HT, Foulkes WD, Tung N, Kim-Sing C, Olopade OI, et al. Effect of oophorectomy on survival after breast cancer in BRCA1 and BRCA2mutation carriers. JAMA Oncol. 2015;1(3):306.PubMedCrossRefGoogle Scholar
  29. 29.
    Azim H, Azim HA Jr. Targeting RANKL in breast cancer: bone metastasis and beyond. Expert Rev Anticancer Ther. 2013;13(2):195–201.PubMedCrossRefGoogle Scholar
  30. 30.
    Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R, et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature. 2010;468(7320):103–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Schramek D, Leibbrandt A, Sigl V, Kenner L, Pospisilik JA, Lee HJ, et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature. 2010;468(7320):98–102.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Asselin-Labat M-L, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER, et al. Control of mammary stem cell function by steroid hormone signalling. Nature. 2010;465(7299):798–802.PubMedCrossRefGoogle Scholar
  33. 33.
    Azim HA Jr, Peccatori FA, Brohée S, Branstetter D, Loi S, Viale G, et al. RANK-ligand (RANKL) expression in young breast cancer patients and during pregnancy. Breast Cancer Res. 2015;17(1):24.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Sigl V, Owusu-Boaitey K, Joshi PA, Kavirayani A, Wirnsberger G, Novatchkova M, et al. RANKL/RANK control Brca1 mutation-driven mammary tumors. Cell Res. 2016;26(7):761–74.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Nolan E, Vaillant F, Branstetter D, Pal B, Giner G, Whitehead L, et al. RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers. Nat Med. 2016;22(8):933–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Widschwendter M, Burnell M, Fraser L, Rosenthal AN, Philpott S, Reisel D, et al. Osteoprotegerin (OPG), the endogenous inhibitor of receptor activator of NF-κBligand (RANKL), is dysregulated in BRCA mutation carriers. EBioMedicine. 2015;2(10):1331–9.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Odén L, Akbari M, Zaman T, Singer CF, Sun P, Narod SA, et al. Plasma osteoprotegerin and breast cancer risk in BRCA1 and BRCA2 mutation carriers. Oncotarget. 2016;7(52):86687–94.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Gnant M, Pfeiler G, Dubsky PC, Hubalek M, Greil R, Jakesz R, et al. Adjuvant denosumab in breast cancer (ABCSG-18): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2015;386(9992):433–43.PubMedCrossRefGoogle Scholar
  39. 39.
    Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–52.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Yau C, Fedele V, Roydasgupta R, Fridlyand J, Hubbard A, Gray JW, et al. Aging impacts transcriptomes but not genomes of hormone-dependent breast cancers. Breast Cancer Res. 2007;9(5):R59.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    TCGA. Comprehensive molecular portraits of human breast tumours. Nature. 2012;487(7407):61–70.Google Scholar
  42. 42.
    Noviello C, Courjal F, Theillet C. Loss of heterozygosity on the long arm of chromosome 6 in breast cancer: possibly four regions of deletion. Clin Cancer Res. 1996;2(9):1601–6.PubMedGoogle Scholar
  43. 43.
    Pereira B, Chin S-F, Rueda OM, Vollan H-KM, Provenzano E, Bardwell HA, et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 2016;7(May):11479.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534(7605):1–20.CrossRefGoogle Scholar
  45. 45.
    Tindemans I, Serafini N, Di Santo JP, Hendriks RW. GATA-3 function in innate and adaptive immunity. Immunity. 2014;41(2):191–206.PubMedCrossRefGoogle Scholar
  46. 46.
    Asselin-Labat M-L, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC, et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol. 2007;9(2):201–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Kouros-Mehr H, Kim J, Bechis SK, Werb Z. GATA-3 and the regulation of the mammary luminal cell fate. CurrOpin Cell Biol. 2008;20(2):164–70.Google Scholar
  48. 48.
    Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell. 2006;127(5):1041–55.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Mair B, Konopka T, Kerzendorfer C, Sleiman K, Salic S, Serra V, et al. Gain- and loss-of-function mutations in the breast cancer gene GATA3 result in differential drug sensitivity. PLoS Genet. 2016;12(9):1–26.CrossRefGoogle Scholar
  50. 50.
    Chou J, Provot S, Werb Z. GATA3 in development and cancer differentiation: cells GATA have it! J Cell Physiol. 2010;222(1):42–9.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Yu-Rice Y, Jin Y, Han B, Qu Y, Johnson J, Watanabe T, et al. FOXC1 is involved in ERα silencing by counteracting GATA3 binding and is implicated in endocrine resistance. Oncogene. 2016;35(41):5400–11.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Azim HA Jr, Santoro L, Russell-Edu W, Pentheroudakis G, Pavlidis N, Peccatori FA. Prognosis of pregnancy-associated breast cancer: a meta-analysis of 30 studies. Cancer Treat Rev. 2012;38(7):834–42.PubMedCrossRefGoogle Scholar
  53. 53.
    Hartman EK, Eslick GD. The prognosis of women diagnosed with breast cancer before, during and after pregnancy: a meta-analysis. Breast Cancer Res Treat. 2016;160(2):347–60.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Lambertini M, Santoro L, Del Mastro L, Nguyen B, Livraghi L, Ugolini D, et al. Reproductive behaviors and risk of developing breast cancer according to tumor subtype: a systematic review and meta-analysis of epidemiological studies. Cancer Treat Rev. 2016;49:65–76.PubMedCrossRefGoogle Scholar
  55. 55.
    Lyons TR, O’Brien J, Borges VF, Conklin MW, Keely PJ, Eliceiri KW, et al. Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX-2. Nat Med. 2011;17(9):1109–15.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    O’Brien J, Lyons T, Monks J, Lucia MS, Wilson RS, Hines L, et al. Alternatively activated macrophages and collagen remodeling characterize the postpartum involutingmammary gland across species. Am J Pathol. 2010;176(3):1241–55.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Azim HA Jr, Brohee S, Peccatori FA, Desmedt C, Loi S, Lambrechts D, et al. Biology of breast cancer during pregnancy using genomic profiling. EndocrRelat Cancer. 2014;21(4):545–54.CrossRefGoogle Scholar
  58. 58.
    Nguyen B, Venet D, Azim HA Jr, Brown D, Desmedt C, Lambertini M, et al. Breast cancer diagnosed during pregnancy is associated with enrichment of non-silent mutations, mismatch repair deficiency signature and mucin mutations. NPJ Breast Cancer. 2018;4:23.Google Scholar
  59. 59.
    Paluch-Shimon S, Pagani O, Partridge AH, Abulkhair O, Cardoso MJ, Dent RA, et al. ESO-ESMO 3rd international consensus guidelines for breast cancer in young women (BCY3). Breast. 2017;35:203–17.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Rosenberg SM, Partridge AH. Management of breast cancer in very young women. Breast. 2015;24:S154–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Partridge AH. Chemotherapy in premenopausal breast cancer patients. Breast Care. 2015;10(5):307–10.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Balmaña J, Domchek SM, Tutt A, Garber JE. Stumbling blocks on the path to personalized medicine in breast cancer: the case of PARP inhibitors for BRCA1/2 -associated cancers. Cancer Discov. 2011;1(1):29–34.PubMedCrossRefGoogle Scholar
  63. 63.
    Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda M, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377(6):523–33.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hamdy A. Azim
    • 1
  • Bastien Nguyen
    • 2
  • Hatem A. AzimJr
    • 3
  1. 1.Department of Clinical OncologyCairo University HospitalCairoEgypt
  2. 2.Breast Cancer Translational Research Laboratory (BCTL), Institut Jules BordetUniversitéLibre de Bruxelles (ULB)BrusselsBelgium
  3. 3.Division of Hematology/Oncology, Department of Internal MedicineAmerican University of Beirut (AUB)BeirutLebanon

Personalised recommendations