Advertisement

From Classical Trajectories to Quantum Commutation Relations

  • F. M. Ciaglia
  • G. Marmo
  • L. SchiavoneEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 229)

Abstract

In describing a dynamical system, the greatest part of the work for a theoretician is to translate experimental data into differential equations. It is desirable for such differential equations to admit a Lagrangian and/or an Hamiltonian description because of the Noether theorem and because they are the starting point for the quantization. As a matter of fact many ambiguities arise in each step of such a reconstruction which must be solved by the ingenuity of the theoretician. In the present work we describe geometric structures emerging in Lagrangian, Hamiltonian and Quantum description of a dynamical system underlining how many of them are not really fixed only by the trajectories observed by the experimentalist.

References

  1. 1.
    Aristotele. Physics. English translation by Philip Wicksteed and Francis Cornford (Heinemann, London, 1957)Google Scholar
  2. 2.
    G. Marmo, E.J. Saletan, A. Simoni, B. Vitale, Dynamical Systems: A Differential Geometric Approach to Symmetry and Reduction (Wiley-Interscience, New York, 1985)zbMATHGoogle Scholar
  3. 3.
    A. D’Avanzo, G. Marmo, Reduction and unfolding: the Kepler problem. Int. J. Geom. Methods Mod. Phys. 2(1), 83–109 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. D’Avanzo, G. Marmo, A. Valentino, Reduction and unfolding for quantum systems: the Hydrogen atom. Int. J. Geom. Methods Mod. Phys. 2(6), 1043–1062 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    V.I. Man’ko, G. Marmo, E.C.G. Sudarshan, F. Zaccaria, f-oscillators and nonlinear coherent states. Phys. Scr. 55(5), 528 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    L. Schiavone, From trajectories to commutation relations. Master’s thesis, Università degli studi di Napoli Federico II, 2018Google Scholar
  7. 7.
    G. Marmo, G. Mendella, W. Tulczyjew, Constrained Hamiltonian system a implicit differential equations. J. Phys. A 30, 277–293 (1997)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    D. Krupka, Introduction to Global Variational Geometry (Atlantis Press, Paris, 2015)CrossRefGoogle Scholar
  9. 9.
    O. Krupkova, The Geometry of Ordinary Variational Equations (Springer, Berlin, 1997)CrossRefGoogle Scholar
  10. 10.
    G. Giachetta, L. Mangiarotti, J. Sardanashvily, New Lagrangian and Hamiltonian Methods in Field Theory (World Scientific, Singapore, 1996)zbMATHGoogle Scholar
  11. 11.
    J. Carinena, G. Marmo, A. Ibort, G. Morandi, Geometry from Dynamics, Classical and Quantum (Springer, Heidelberg, 2015)CrossRefGoogle Scholar
  12. 12.
    R.M. Santilli, Foundations of Theoretical Mechanics I: The Inverse problem in Newtonian Mechanics (Springer, New York, 1978)CrossRefGoogle Scholar
  13. 13.
    G. Morandi, C. Ferrario, G. Lo Vecchio, G. Marmo, C. Rubano, The inverse problem in the Calculus of Variations and the geometry of the tangent bundle. Phys. Rep. 188(3&4), 147–284 (1990)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Crampin, On the differential geometry of the Euler-Lagrange equations, and the inverse problem of Lagrangian dynamics. J. Phys. A Math. Gen. 14, 2567–2575 (1981)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    O. Krupkova, Second Order Ordinary Differential Equations on Jet Bundles and the Inverse Problem of the Calculus of Variations. Handbook of Global Analysis (Elsevier, New York, 1997)Google Scholar
  16. 16.
    M. Barbero-Linan, M. FarrePuiggalí, D.M. De Diego, Isotropic submanifolds and the inverse problem for mechanical constrained systems. J. Phys. A Math. Theor. 48(4), 045210 (2015)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Barbero-Linan, M. Farre Puiggalí, S. Ferraro, D.M. DeDiego, The inverse problem of the calculus of variations for discrete systems. J. Phys. A Math. Theor. 51(18), 185202 (2018)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    M. Giordano, G. Marmo, G. Rubano, The inverse problem in the Hamiltonian formalism: integrability of linear Hamiltonian fields. Inverse Prob. 9, 443–467 (1993)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    S. De Filippo, G. Landi, G. Marmo, G. Vilasi. Tensor fields defining a tangent bundle structure, Annales de l’I.H.P., A(50-2):205–218 (1989)Google Scholar
  20. 20.
    R. Abraham, J.E. Marsden, T. Ratiu, Manifolds, Tensor Analysis, and Applications, 3rd edn. (Springer, New York, 2012)zbMATHGoogle Scholar
  21. 21.
    C. Laurent-Gengoux, A. Pichereau, P. Vanhaecke, Poisson Structures (Springer, Berlin, 2013)CrossRefGoogle Scholar
  22. 22.
    R.G. Smirnov, Magri–Morosi–Gel’fand–Dorfman’s bi-Hamiltonian constructions in the action-angle variables. J. Math. Phys. 38(12), 6444–6453 (1997)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    E. Ercolessi, A. Ibort, G. Marmo, G. Morandi, Alternative linear structures for classical and quantum systems. Int. J. Mod. Phys. A 22(18), 3039–3064 (2007)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    E. Ercolessi, G. Marmo, G. Morandi, From equations of motion to canonical commutation relations. Riv. Nuovo Cimento 33, 401–590 (2010)Google Scholar
  25. 25.
    J. Grabowski, M. Kùs, G. Marmo, T. Shulman, Geometry of quantum dynamics in infinite-dimensional Hilbert space. J. Phys. A Math. Theor. 51, 165301 (2018)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Max Planck Institute for Mathematics in the SciencesLeipzigGermany
  2. 2.Dipartimento di Fisica “E. Pancini”Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo Edificio 6via CintiaItaly
  3. 3.Department of Mathematics, Faculty of ScienceUniversity of OstravaOstravaCzech Republic

Personalised recommendations