Advertisement

Application of Lie Systems to Quantum Mechanics: Superposition Rules

  • José F. Cariñena
  • Jesús Clemente-GallardoEmail author
  • Jorge A. Jover-Galtier
  • Javier de Lucas
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 229)

Abstract

We prove that t-dependent Schrödinger equations on finite-dimensional Hilbert spaces determined by t-dependent Hermitian Hamiltonian operators can be described through Lie systems admitting a Vessiot-Guldberg Lie algebra of Kähler vector fields. This result is extended to other related Schrödinger equations, e.g. projective ones, and their properties are studied through Poisson, presymplectic, and Kähler structures. This leads to deriving nonlinear superposition rules for them depending on a lower (or equal) number of solutions than standard linear ones. As an application, we study n-qubit systems and special attention is paid to the one-qubit case.

AMS Classification

34A26 (Primary) 17B81, 34A34, 53Z05 (Secondary) 

Notes

Acknowledgements

J. F. Cariñena, J. A. Jover-Galtier and J. Clemente-Gallardo acknowledge partial financial support from MINECO (Spain) grant number MTM2015-64166-C2-1. Research of J. de Lucas was supported under the contract 1100/112000/16. Research of J. Clemente-Gallardo and J. A. Jover-Galtier was financed by projects MICINN Grants FIS2013-46159-C3-2-P. Research of J. A. Jover-Galtier was financed by DGA grant number B100/13 and by “Programa de FPU del Ministerio de Educación, Cultura y Deporte” grant number FPU13/01587.

References

  1. 1.
    M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. London Ser. A. 392, 45–57 (1984)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    N.H. Ibragimov (ed.), CRC Handbook of Lie Group Analysis of Differential Equations, Volume I: Symmetries, Exact Solutions, and Conservation Laws (CRC Press, Boca Raton, 1993)Google Scholar
  3. 3.
    P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 2000)zbMATHGoogle Scholar
  4. 4.
    J.F. Cariñena, A. Ibort, G. Marmo, G. Morandi, Geometry from Dynamics, Classical and Quantum (Springer, Dordrecht, 2015)zbMATHCrossRefGoogle Scholar
  5. 5.
    J.F. Cariñena, J. Grabowski, G. Marmo, Lie-Scheffers Systems: A Geometric Approach (Bibliopolis, Naples, 2000)zbMATHGoogle Scholar
  6. 6.
    J.F. Cariñena, J. Grabowski, G. Marmo, Superposition rules, Lie theorem, and partial differential equations. Rep. Math. Phys. 60, 237–258 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    N.H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations (Wiley, Chichester, 1999)zbMATHGoogle Scholar
  8. 8.
    S. Lie, G. Scheffers, Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen (B. G. Teubner, Leipzig, 1893)Google Scholar
  9. 9.
    P. Winternitz, Lie groups and solutions of nonlinear differential equations, in Nonlinear Phenomena, ed. by K.B. Wolf (Springer, Berlin, 1983), pp. 263–305CrossRefGoogle Scholar
  10. 10.
    J.F. Cariñena, Recent advances on Lie systems and their applications. Banach Cent. Publ. 113, 95–110 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    R.M. Angelo, E.I. Duzzioni, A.D. Ribeiro, Integrability in \(t\)-dependent systems with one degree of freedom. J. Phys. A: Math. Theor. 45, 055101 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    J.F. Cariñena, J. de Lucas, A. Ramos, A geometric approach to time evolution operators of Lie quantum systems. Int. J. Theor. Phys. 48, 1379–1404 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Á. Ballesteros, J.F. Cariñena, F.J. Herranz, J. de Lucas, C. Sardón, From constants of motion to superposition rules for Lie-Hamilton systems. J. Phys. A: Math. Theor. 46, 285203 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    R. Campoamor-Stursberg, Low dimensional Vessiot-Guldberg-Lie algebras of second-order ordinary differential equations. Symmetry 8, 15 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    J.F. Cariñena, J. de Lucas, Applications of Lie systems in dissipative Milne-Pinney equations. Int. J. Geom. Meth. Mod. Phys. 6, 683–699 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    J.F. Cariñena, J. de Lucas, M.F. Rañada, Recent applications of the theory of Lie systems in Ermakov systems. SIGMA 4, 031 (2008)MathSciNetzbMATHGoogle Scholar
  17. 17.
    J.N. Clelland, P.J. Vassiliou, A solvable string on a Lorentzian surface. Differ. Geom. Appl. 33, 177–198 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Z. Fiala, Evolution equation of Lie-type for finite deformations, time-discrete integration, and incremental methods. Acta Mech. 226, 17–35 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    L. Menini, A. Tornambè, Nonlinear superposition formulas for two classes of non-holonomic systems. J. Dyn. Control Syst. 20, 365–382 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    J.F. Cariñena, J. de Lucas, Lie systems: theory, generalisations, and applications. Diss. Math. 479, 162 (2011)MathSciNetzbMATHGoogle Scholar
  21. 21.
    N.H. Ibragimov, Discussion of Lie’s nonlinear superposition theory, in Proceedings of International Conference on MOGRAN 2000 (Ufa, 2000), pp. 3–5Google Scholar
  22. 22.
    N.H. Ibragimov, Utilization of canonical variables for integration of systems of first-order differential equations. Arch. ALGA 6, 1–18 (2009)Google Scholar
  23. 23.
    Á. Ballesteros, A. Blasco, F.J. Herranz, J. de Lucas, C. Sardón, Lie-Hamilton systems on the plane: properties, classification and applications. J. Differ. Equ. 258, 2873–2907 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    R. Flores-Espinoza, Monodromy factorization for periodic Lie systems and reconstruction phases, in AIP Conference Proceedings, vol. 1079, ed. by P. Kielanowski et al. (AIP Publishing, New York, 2008), pp. 189–195Google Scholar
  25. 25.
    R. Flores-Espinoza, Periodic first integrals for Hamiltonian systems of Lie type. Int. J. Geom. Methods Mod. Phys. 8, 1169–1177 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    J.F. Cariñena, J. de Lucas, C. Sardón, Lie-Hamilton systems: theory and applications. Int. J. Geom. Methods Mod. Phys. 10, 1350047 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    J. de Lucas, S. Vilariño, \(k\)-Symplectic Lie systems: theory and applications. J. Differ. Equ. 258, 2221–2255 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    F.J. Herranz, J. de Lucas, C. Sardón, Jacobi-Lie systems: fundamentals and low-dimensional classification, in AIMS Conference Publication 2015, ed. by M. de León, et al. (2015), pp. 605–614Google Scholar
  29. 29.
    J.F. Cariñena, J. Grabowski, J. de Lucas, C. Sardón, Dirac-Lie systems and Schwarzian equations. J. Differ. Equ. 257, 2303–2340 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    R. Flores-Espinoza, J. de Lucas, Y.M. Vorobiev, Phase splitting for periodic Lie systems. J. Phys. A: Math. Theor. 43, 205–208 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    A. Blasco, F.J. Herranz, J. de Lucas, C. Sardón, Lie-Hamilton systems on the plane: applications and superposition rules. J. Phys. A: Math. Theor. 48, 345202 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    J.F. Cariñena, A. Ramos, Applications of Lie systems in quantum mechanics and control theory. Banach Cent. Publ. 59, 143–162 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    J.F. Cariñena, A. Ramos, Lie systems and connections in fibre bundles: applications in quantum mechanics, in Proceedings of 9th ICDGA (Matfyzpress, Prague, 2005), pp. 437–452Google Scholar
  34. 34.
    D.C. Brody, L.P. Hughston, Geometric Quantum Mechanics. J. Geom. Phys. 38, 19–53 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    J.F. Cariñena, J. Clemente-Gallardo, G. Marmo, Geometrization of quantum mechanics. Theor. Math. Phys. 152, 894–903 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    J. Clemente-Gallardo, G. Marmo, Basics of quantum mechanics, geometrization and some applications to quantum information. Int. J. Geom. Methods Mod. Phys. 5, 989–1032 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    J.A. Jover-Galtier, Open quantum systems: geometric description, dynamics and control. Ph.D. thesis, Universidad de Zaragoza (2017)Google Scholar
  38. 38.
    D.C. Brody, L.P. Hughston, The quantum canonical ensemble. J. Math. Phys. 39, 6502–6508 (1998)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    A. Ekert, M. Ericsson, P. Hayden, H. Inamori, J.A. Jones, D.K.L. Oi, V. Vendral, Geometric quantum computation. J. Mod. Opt. 47, 14–15 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    R. Abraham, J.E. Marsden, Foundations of Mechanics, 2nd edn. (Addison-Wesley, Redwood City, 1987)Google Scholar
  41. 41.
    E.L. Ince, Ordinary Differential Equations (Dover Publications, New York, 1944)zbMATHGoogle Scholar
  42. 42.
    M. de León, C. Sardón, Geometric Hamilton-Jacobi theory on Nambu-Poisson manifolds. J. Math. Phys. 58, 033508 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    A. Ashtekar, T.A. Schilling, Geometrical formulation of quantum mechanics, in Einstein’s Path, ed. by A. Harvey (Springer, New York, 1999), pp. 23–65CrossRefGoogle Scholar
  44. 44.
    W. Ballmann, Lectures on Kähler Manifolds (EMS Publishing House, Zürich, 2006)zbMATHCrossRefGoogle Scholar
  45. 45.
    M. Nakahara, Geometry, Topology and Physics, 2nd edn. (Institute of Physics Publishing, 2003)Google Scholar
  46. 46.
    G.W. Gibbons, Typical states and density matrices. J. Geom. Phys. 8, 147–162 (1992)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces (Academic Press, London, 1978)zbMATHGoogle Scholar
  48. 48.
    J. Wolf, On the classification of Hermitian symmetric spaces. Indiana Univ. J. Math. Mech. 13, 489–495 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    J.F. Cariñena, J. Grabowski, G. Marmo, Some physical applications of systems of differential equations admitting a superposition rule. Rep. Math. Phys. 48, 47–58 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    M. Crampin, F.A.E. Pirani, Applicable Differential Geometry (Cambridge University Press, Cambridge, 1986)zbMATHGoogle Scholar
  51. 51.
    S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol. 2 (Interscience Publishers, New York 1963, 1969)Google Scholar
  52. 52.
    I. Vaisman, Lectures on the Geometry of Poisson Manifolds (Birkhaüser, Basel, 1994)zbMATHCrossRefGoogle Scholar
  53. 53.
    E. Ercolessi, G. Morandi, G. Marmo, From the equations of motion to the canonical commutation relations Riv. Nuovo Cimento 33, 401–590 (2010)Google Scholar
  54. 54.
    R. Cirelli, M. Gatti, A. Manià, The pure state space of quantum mechanics as Hermitian symmetric space. J. Geom. Phys. 45, 267–284 (2003)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    V.I. Man’ko, G. Marmo, E.C.G. Sudarshan, F. Zaccaria, Interference and entanglement: an intrinsic approach. J. Phys. A: Math. Gen. 35, 7137–7157 (2002)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    V.I. Man’ko, G. Marmo, E.C.G. Sudarshan, F. Zaccaria, Inner composition law of pure states as a purification of impure states. Phys. Lett. A 273, 31–36 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • José F. Cariñena
    • 1
    • 2
  • Jesús Clemente-Gallardo
    • 1
    • 3
    Email author
  • Jorge A. Jover-Galtier
    • 4
  • Javier de Lucas
    • 5
  1. 1.Department of Theoretical Physics, Faculty of SciencesUniversity of ZaragozaZaragozaSpain
  2. 2.IUI IUMA, University of ZaragozaZaragozaSpain
  3. 3.IUI BIFI, University of Zaragoza, Edificio I+DZaragozaSpain
  4. 4.Centro Universitario de la Defensa de Zaragoza, Academia General MilitarZaragozaSpain
  5. 5.Department of Mathematical Methods in PhysicsUniversity of WarsawWarszawaPoland

Personalised recommendations