Advertisement

Transcriptome Analysis of Salvia miltiorrhiza

  • Hongmei LuoEmail author
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Salvia miltiorrhiza is the source for the production of tanshinones and phenolic acids, which possess pharmacological properties for the treatment of cardiovascular and cerebrovascular diseases and hyperlipidemia. However, the biosynthetic mechanism of these bioactive secondary metabolites remains unclear. Transcriptome analysis is a promising tool to illustrate the biosynthesis, growth, and development of these bioactive compounds and the genetic diversity of S. miltiorrhiza. The next-generation sequencing (NGS) technologies, such as the second-generation sequencing (SGS) technologies (e.g., Illumina) and the third-generation sequencing technologies (e.g., PacBio), are suitable and widely used for transcriptome analysis of S. miltiorrhiza. NGS enables the identification of gene expression profiling and facilitates reliable discoveries of genes related to secondary metabolite biosynthetic pathway. At present, hybrid sequencing strategies integrating the strengths of SGS and PacBio sequencing have obtained considerable transcriptome information of medicinal plants. NGS provides useful information for the direct detection of genetic markers and alternative splicing events related to the biosynthesis of secondary metabolites that facilitate the rapid breeding of medicinal plants.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation (31570302) and Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (CIFMS, 2016-I2M-3–016).

References

  1. Au KF, Sebastiano V, Afshar PT, Durruthy JD, Lee L, Williams BA, van Bakel H, Schadt EE, Reijo-Pera RA, Underwood JG, Wong WH (2013) Characterization of the human ESC transcriptome by hybrid sequencing. Proc Natl Acad Sci U S A 110:4821–4830CrossRefGoogle Scholar
  2. Barash Y, Calarco JA, Gao W, Pan Q, Wang X, Shai O, Blencowe BJ, Frey BJ (2010) Deciphering the splicing code. Nature 465:53–59PubMedCrossRefGoogle Scholar
  3. Bozhko M, Riegel R, Schubert R, Muller-Starck G (2003) A cyclophilin gene marker confirming geographical differentiation of Norway spruce populations and indicating viability response on excess soil-born salinity. Mol Ecol 12:3147–3155PubMedCrossRefGoogle Scholar
  4. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634PubMedCrossRefGoogle Scholar
  5. Chen HM, Wu B, Nelson DR, Wu K, Liu C (2014) Computational identification and systematic classification of novel cytochrome P450 genes in Salvia miltiorrhiza. PLoS ONE 9(12):e115149PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cui G, Huang L, Tang X, Zhao J (2011) Candidate genes involved in tanshinone biosynthesis in hairy roots of Salvia miltiorrhiza revealed by cDNA microarray. Mol Biol Rep 38:2471–2478PubMedCrossRefGoogle Scholar
  7. Dong L, Liu H, Zhang J, Yang S, Kong G, Chu JS, Chen N, Wang D (2015) Single-molecule real-time transcript sequencing facilitates common wheat genome annotation and grain transcriptome research. BMC Genom 16:1039CrossRefGoogle Scholar
  8. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138PubMedCrossRefPubMedCentralGoogle Scholar
  9. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114PubMedCrossRefPubMedCentralGoogle Scholar
  10. Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7:461–465PubMedPubMedCentralCrossRefGoogle Scholar
  11. Gao W, Sun HX, Xiao H, Cui G, Hillwig ML, Jackson A, Wang X, Shen Y, Zhao N, Zhang L, Wang XJ, Peters RJ, Huang L (2014) Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza. BMC Genom 115:73CrossRefGoogle Scholar
  12. Ge Q, Zhang Y, Hua WP, Wu YC, Jin XX, Song SH, Wang ZZ (2015) Combination of transcriptomic and metabolomic analyses reveals a JAZ repressor in the jasmonate signaling pathway of Salvia miltiorrhiza. Sci Rep 5:14048PubMedPubMedCentralCrossRefGoogle Scholar
  13. German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers BC, Green PJ (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26:941–946PubMedCrossRefPubMedCentralGoogle Scholar
  14. Gordon SP, Tseng E, Salamov A, Zhang J, Meng X, Zhao Z, Kang D, Underwood J, Grigoriev IV, Figueroa M, Schilling JS, Chen F, Wang Z (2015) Widespread polycistronic transcripts in fungi revealed by single-molecule mRNA sequencing. PLoS ONE 10:e0132628PubMedPubMedCentralCrossRefGoogle Scholar
  15. Gowda M, Li H, Alessi J, Chen F, Pratt R, Wang GL (2006) Robust analysis of 5’-transcript ends (5’-RATE): a novel technique for transcriptome analysis and genome annotation. Nucleic Acids Res 34:e126PubMedPubMedCentralCrossRefGoogle Scholar
  16. Gowda M, Li H, Wang GL (2007) Robust analysis of 5’-transcript ends: a high-throughput protocol for characterization of sequence diversity of transcription start sites. Nat Protoc 2:1622–1632PubMedCrossRefPubMedCentralGoogle Scholar
  17. Graham IA, Besser K, Blumer S, Branigan CA, Czechowski T, Elias L, Guterman I, Harvey D, Isaac PG, Khan AM, Larson TR, Li Y, Pawson T, Penfield T, Rae AM, Rathbone DA, Reid S, Ross J, Smallwood MF, Segura V, Townsend T, Vyas D, Winzer T, Bowles D (2010) The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science 327:328–331PubMedCrossRefPubMedCentralGoogle Scholar
  18. Guo J, Zhou YJ, Hillwig ML, Shen Y, Yang L, Wang Y, Zhang X, Liu W, Peters RJ, Chen X, Zhao ZK, Huang L (2013) CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc Natl Acad Sci U S A 110:12108–12113PubMedPubMedCentralCrossRefGoogle Scholar
  19. Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80:524–536Google Scholar
  20. Hall N (2007) Advanced sequencing technologies and their wider impact in microbiology. J Exp Biol 210:1518–1525PubMedCrossRefPubMedCentralGoogle Scholar
  21. Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Braslavsky I, Causey M, Colonell J, Dimeo J, Efcavitch JW, Giladi E, Gill J, Healy J, Jarosz M, Lapen D, Moulton K, Quake SR, Steinmann K, Thayer E, Tyurina A, Ward R, Weiss H, Xie Z (2008) Single-molecule DNA sequencing of a viral genome. Science 320:106–109PubMedCrossRefPubMedCentralGoogle Scholar
  22. Hua W, Zhang Y, Song J, Zhao L, Wang Z (2011) De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomics 98(4):272–279CrossRefGoogle Scholar
  23. Huang J, Hao P, Zhang YL, Deng FX, Deng Q, Hong Y, Wang XW, Wang Y, Li TT, Zhang XG, Li YX, Yang PY, Wang HY, Han ZG (2007) Discovering multiple transcripts of human hepatocytes using massively parallel signature sequencing (MPSS). BMC Genom 8:207CrossRefGoogle Scholar
  24. Jennewein S, Wildung MR, Chau M, Walker K, Croteau R (2004) Random sequencing of an induced Taxus cell cDNA library for identification of clones involved in Taxol biosynthesis. Proc Natl Acad Sci U S A 101:9149–9154PubMedPubMedCentralCrossRefGoogle Scholar
  25. Jiang Z, Zhou X, Li R, Michal JJ, Zhang S, Dodson MV, Zhang Z, Harland RM (2015) Whole transcriptome analysis with sequencing: methods, challenges and potential solutions. Cell Mol Life Sci 72(18):3425–3439PubMedPubMedCentralCrossRefGoogle Scholar
  26. Ji A, Luo H, Xu Z, Zhang X, Zhu Y, Liao B, Yao H, Song J, Chen S (2016) Genome-wide identification of the AP2/ERF gene family involved in active constituent biosynthesis in Salvia miltiorrhiza. Plant Genome 9(2).  https://doi.org/10.3835/plantgenome2015.08.0077CrossRefGoogle Scholar
  27. Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z, Rasko DA, McCombie WR, Jarvis ED, Phillippy Adam M (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 30:693–700PubMedPubMedCentralCrossRefGoogle Scholar
  28. Li Y, Luo HM, Sun C, Song JY, Sun YZ, Wu Q, Wang N, Yao H, Steinmetz A, Chen SL (2010) EST analysis reveals putative genes involved in glycyrrhizin biosynthesis. BMC Genom 11:268CrossRefGoogle Scholar
  29. Li D, Shao F, Lu S (2015) Identification and characterization of mRNA-like noncoding RNAs in Salvia miltiorrhiza. Planta 241:1131–1143PubMedCrossRefPubMedCentralGoogle Scholar
  30. Lipson D, Raz T, Kieu A, Jones DR, Giladi E, Thayer E, Thompson JF, Letovsky S, Milos P, Causey M (2009) Quantification of the yeast transcriptome by single-molecule sequencing. Nat Biotechnol 27:652–658PubMedCrossRefGoogle Scholar
  31. Luo H, Zhu Y, Song J, Xu L, Sun C, Zhang X, Xu Y, He L, Sun W, Xu H, Wang B, Li X, Li C, Liu J, Chen S (2014) Transcriptional data mining of Salvia miltiorrhiza in response to methyl jasmonate to examine the mechanism of bioactive compound biosynthesis and regulation. Physiol Plant 152(2):241–255PubMedPubMedCentralCrossRefGoogle Scholar
  32. Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, Sam L, Barrette T, Palanisamy N, Chinnaiyan AM (2009) Transcriptome sequencing to detect gene fusions in cancer. Nature 458:97–101PubMedPubMedCentralCrossRefGoogle Scholar
  33. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedPubMedCentralCrossRefGoogle Scholar
  34. Morozova O, Hirst M, Marra MA (2009) Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genom Hum Genet 10:135–151CrossRefGoogle Scholar
  35. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628PubMedPubMedCentralCrossRefGoogle Scholar
  36. Murata J, Roepke J, Gordon H, De Luca V (2008) The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell 20:524–542PubMedPubMedCentralCrossRefGoogle Scholar
  37. Nielsen KL, Hogh AL, Emmersen J (2006) DeepSAGE—digital transcriptomics with high sensitivity, simple experimental protocol and multiplexing of samples. Nucleic Acids Res 34:133CrossRefGoogle Scholar
  38. Ohlrogge J, Benning C (2000) Unraveling plant metabolism by EST analysis. Curr Opin Plant Biol 3:224–228PubMedCrossRefGoogle Scholar
  39. Reid JG, Nagaraja AK, Lynn FC, Drabek RB, Muzny DM, Shaw CA, Weiss MK, Naghavi AO, Khan M, Zhu H, Tennakoon J, Gunaratne GH, Corry DB, Miller J, McManus MT, German MS, Gibbs RA, Matzuk MM, Gunaratne PH (2008) Mouse let-7 miRNA populations exhibit RNA editing that is constrained in the 5’-seed/cleavage/anchor regions and stabilize predicted mmu-let-7a: mRNA duplexes. Genome Res 18:1571–1581PubMedPubMedCentralCrossRefGoogle Scholar
  40. Sánchez-León N, Arteaga-Vázquez M, Alvarez-Mejía C, Mendiola-Soto J, Durán-Figueroa N, Rodríguez-Leal D, Rodríguez-Arévalo I, García-Campayo V, García-Aguilar M, Olmedo-Monfil V, Arteaga-Sánchez M, de la Vega OM, Nobuta K, Vemaraju K, Meyers BC, Vielle-Calzada JP (2012) Transcriptional analysis of the Arabidopsis ovule by massively parallel signature sequencing. J Exp Bot 63(10):3829–3842PubMedPubMedCentralCrossRefGoogle Scholar
  41. Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19:227–240CrossRefGoogle Scholar
  42. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470PubMedCrossRefPubMedCentralGoogle Scholar
  43. Sengoelge G, Winnicki W, Kupczok A, von Haeseler A, Schuster M, Pfaller W, Jennings P, Weltermann A, Blake S, Sunder-Plassmann G (2014) A SAGE based approach to human glomerular endothelium: defining the transcriptome, finding a novel molecule and highlighting endothelial diversity. BMC Genom 15:725CrossRefGoogle Scholar
  44. Shao Y, Wei J, Wu F, Zhang H, Yang D, Liang Z, Jin W (2016) DsTRD: Danshen transcriptional resource database. PLoS ONE 11(2):e0149747PubMedPubMedCentralCrossRefGoogle Scholar
  45. Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, Church GM (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732PubMedCrossRefPubMedCentralGoogle Scholar
  46. Song Z, Guo L, Liu T, Lin C, Wang J, Li X (2017) Comparative RNA-sequence transcriptome analysis of phenolic acid metabolism in Salvia miltiorrhiza, a traditional Chinese medicine model plant. Int J Genomics 2017:9364594PubMedPubMedCentralCrossRefGoogle Scholar
  47. Tang JF, Baldwin SJ, Jacobs JME, van der Linden CG, Voorrips RE, Leunissen JA, van Eck H, Vosman B (2008) Large-scale identification of polymorphic microsatellites using an in silico approach. BMC Bioinformatics 9:374PubMedPubMedCentralCrossRefGoogle Scholar
  48. Teoh KH, Polichuk DR, Reed DW, Nowak G, Covello PS (2006) Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett 580:1411–1416PubMedCrossRefPubMedCentralGoogle Scholar
  49. Tessler LA, Reifenberger JG, Mitra RD (2009) Protein quantification in complex mixtures by solid phase single-molecule counting. Anal Chem 81:7141–7148PubMedCrossRefPubMedCentralGoogle Scholar
  50. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578PubMedPubMedCentralCrossRefGoogle Scholar
  51. Unamba CI, Nag A, Sharma RK (2015) Next generation sequencing technologies: the doorway to the unexplored genomics of non-model plants. Front Plant Sci 6:1074PubMedPubMedCentralCrossRefGoogle Scholar
  52. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487PubMedCrossRefPubMedCentralGoogle Scholar
  53. Wang BQ (2010) Salvia miltiorrhiza: chemical and pharmacological review of a medicinal plant. J Med Plant Res 4(25):2813–2820Google Scholar
  54. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63PubMedPubMedCentralCrossRefGoogle Scholar
  55. Wei T, Deng K, Wang H, Zhang L, Wang C, Song W, Zhang Y, Chen C (2018) Comparative transcriptome analyses reveal potential mechanisms of enhanced drought tolerance in transgenic Salvia miltiorrhiza plants expressing AtDREB1A from Arabidopsis. Int J Mol Sci 19:827PubMedCentralCrossRefGoogle Scholar
  56. Xu X, Jiang Q, Ma X, Ying Q, Shen B, Qian Y, Song H, Wang H (2014) Deep sequencing identifies tissue-specific microRNAs and their target genes involving in the biosynthesis of tanshinones in Salvia miltiorrhiza. PLoS ONE 9(11):e111679PubMedPubMedCentralCrossRefGoogle Scholar
  57. Xu Z, Reuben JP, Weirather J, Luo H, Liao B, Zhang X, Zhu Y, Ji A, Zhang B, Hu S, Au KF, Song J, Chen S (2015) Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. Plant J 82(6):951–961PubMedPubMedCentralCrossRefGoogle Scholar
  58. Xu H, Song J, Luo H, Zhang Y, Li Q, Zhu Y, Xu J, Li Y, Song C, Wang B, Sun W, Shen G, Zhang X, Qian J, Ji A, Xu Z, Luo X, He L, Li C, Sun C, Yan H, Cui G, Li X, Li XE, Wei J, Liu J, Wang Y, Hayward A, Nelson D, Ning Z, Peters RJ, Qi X, Chen S (2016) Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza. Mol Plant 9(6):949–952PubMedPubMedCentralCrossRefGoogle Scholar
  59. Yan Y, Wang Z, Tian W, Dong Z, Spencer DF (2010) Generation and analysis of expressed sequence tags from the medicinal plant Salvia miltiorrhiza. Sci China Life Sci 53:273–285PubMedCrossRefPubMedCentralGoogle Scholar
  60. Yang L, Ding G, Lin H, Cheng H, Kong Y, Wei Y, Fang X, Liu R, Wang L, Chen X, Yang C (2013) Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis. PLoS ONE 8(11):e80464PubMedPubMedCentralCrossRefGoogle Scholar
  61. Zhang X, Luo H, Xu Z, Zhu Y, Ji A, Song J, Chen S (2015a) Genome-wide characterisation and analysis of bHLH transcription factors related to tanshinone biosynthesis in Salvia miltiorrhiza. Sci Rep 5: https://doi.org/10.1038/srep11244PubMedPubMedCentralCrossRefGoogle Scholar
  62. Zhang G, Tian Y, Zhang J, Shu L, Yang S, Wang W, Sheng J, Dong Y, Chen W (2015b) Hybrid de novo genome assembly of the Chinese herbal plant danshen (Salvia miltiorrhiza Bunge). GigaScience 4:62PubMedPubMedCentralCrossRefGoogle Scholar
  63. Zhang X, Dong J, Liu H, Wang J, Qi Y, Liang Z (2016) Transcriptome sequencing in response to salicylic acid in Salvia miltiorrhiza. PLoS ONE 11(1):e0147849PubMedPubMedCentralCrossRefGoogle Scholar
  64. Zhang Y, Xu Z, Ji A, Luo H, Song J (2018) Genomic survey of bZIP transcription factor genes related to tanshinone biosynthesis in Salvia miltiorrhiza. Acta Pharm Sin B 8:295–305PubMedCrossRefPubMedCentralGoogle Scholar
  65. Zhong GX, Li P, Zeng LJ, Guan J, Li DQ, Li SP (2009) Chemical characteristics of Salvia miltiorrhiza (Danshen) collected from different locations in China. J Agric Food Chem 57:6879–6887PubMedCrossRefPubMedCentralGoogle Scholar
  66. Zhou L, Zuo Z, Chow MS (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45:1345–1359PubMedPubMedCentralCrossRefGoogle Scholar
  67. Zhou W, Huang Q, Wu X, Zhou Z, Ding M, Shi M, Huang F, Li S, Wang Y, Kai G (2017) Comprehensive transcriptome profiling of Salvia miltiorrhiza for discovery of genes associated with the biosynthesis of tanshinones and phenolic acids. Sci Rep 7:10554PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina

Personalised recommendations