Biochemistry, Biosynthesis, and Medicinal Properties of Phenolic Acids in Salvia miltiorrhiza

  • Guoyin KaiEmail author
  • Shucan Liu
  • Min Shi
  • Bing Han
  • Xiaolong Hao
  • Zhixiang Liu
Part of the Compendium of Plant Genomes book series (CPG)


As one group of important bioactive compounds in Salvia miltiorrhiza, water-soluble phenolic acids own a variety of bioactivities including anti-oxidation, anti-inflammatory, and anti-cancer. Due to the degradation of genetic resources and low content of phenolic acids in traditionally cultured S. miltiorrhiza, limited phenolic acid production cannot meet the increasing market demand. It is extremely important to use modern biotechnology methods to increase the yield of phenolic acids. Here, we summarize pharmacological activities of phenolic acids in S. miltiorrhiza, as well as various biological methods including culturing hairy roots, callus, suspension cells, and endophytic fungi for producing phenolic acids and using elicitors treatment, metabolic engineering and transcriptional regulation for increasing the production of phenolic acids.



This work was supported by National Natural Science Fund of China (81522049, 31571735, 31270007), the “Dawn” Program of Shanghai Education Commission (16SG38), Shanghai Science and Technology Committee Project (17JC1404300), Zhejiang Provincial Ten Thousands Program for Leading Talents of Science and Technology Innovation, Zhejiang Provincial Program for the Cultivation of High-level Innovative Health talents.


  1. Bao Y, Wang L, Xu Y, Yang Y, Wang L, Si S, Cho S, Hong B (2012) Salvianolic acid B inhibits macrophage uptake of modified low density lipoprotein (mLDL) in a scavenger receptor CD36-dependent manner. Atherosclerosis 223(1):152–159CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bi L, Chen J, Yuan X, Jiang Z, Chen W (2013) Salvianolic acid A positively regulates PTEN protein level and inhibits growth of A549 lung cancer cells. Biomed Rep 1(2):213–217CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cai Z, Kastell A, Speiser C, Smetanska I (2013) Enhanced resveratrol production in Vitis vinifera cell suspension cultures by heavy metals without loss of cell viability. Appl Biochem Biotech 171(2):330–340CrossRefGoogle Scholar
  4. Cai J, Chen S, Zhang W, Zheng X, Hu S, Pang C, Lu J, Xing J, Dong Y (2014) Salvianolic acid A reverses paclitaxel resistance in human breast cancer MCF-7 cells via targeting the expression of transgelin 2 and attenuating PI3K/Akt pathway. Phytomedicine 21(12):1725–1732CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cao WZ, Wang Y, Shi M, Hao XL, Wang Y, Zhao WW, Wang Y, Ren J, Kai GY (2018) Transcription factor SmWRKY1 positively promotes the biosynthesis of tanshinones in Salvia miltiorrhiza. Front Plant Sci 9:554CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen T, Liu W, Chao X, Zhang L, Qu Y, Huo J, Fei Z (2011) Salvianolic acid B attenuates brain damage and inflammation after traumatic brain injury in mice. Brain Res Bull 84(2):163–168CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen RC, Sun GB, Ye JX, Wang J, Zhang MD, Sun XB (2017) Salvianolic acid B attenuates doxorubicin-induced ER stress by inhibiting TRPC3 and TRPC6 mediated Ca2+ overload in rat cardiomyocytes. Toxicol Lett 276:21–30CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dhapare S, Sakagami M (2018) Salvianolic acid B as an anti-emphysema agent I: in vitro stimulation of lung cell proliferation and migration, and protection against lung cell death, and in vivo lung STAT3 activation and VEGF elevation. Pulm Pharmacol Ther 53:107–115CrossRefPubMedPubMedCentralGoogle Scholar
  9. Di P, Zhang L, Chen JF, Tan H, Xiao Y, Dong X, Zhou X, Chen WS (2013) 13C tracer reveals phenolic acids biosynthesis in hairy root cultures of Salvia miltiorrhiza. ACS Chem Biol 8(7):1537–1548PubMedPubMedCentralGoogle Scholar
  10. Ding K, Pei TL, Bai ZQ, Jia YY, Ma PD, Liang ZS (2017) SmMYB36, a novel R2R3-MYB transcription factor, enhances tanshinone accumulation and decreases phenolic acid content in Salvia miltiorrhiza hairy roots. Sci Rep 7(1):5104CrossRefPubMedPubMedCentralGoogle Scholar
  11. Du TZ, Niu JF, Su J, Li SS, Guo XR, Li L, Cao XY, Kang JF (2018) SmbHLH37 functions antagonistically with SmMYC2 in regulating jasmonate-mediated biosynthesis of phenolic acids in Salvia miltiorrhiza. Front Plant Sci 9:1720CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15(10):573–581CrossRefGoogle Scholar
  13. Fan HY, Fu FH, Yang MY, Xu H, Zhang AH, Liu K (2010) Antiplatelet and antithrombotic activities of salvianolic acid A. Thromb Res 126(1):e17–e22CrossRefGoogle Scholar
  14. Fan HY, Yang MY, Qi D, Zhang ZK, Zhu L, Shang-Guan XX, Liu K, Xu H, Che X (2015) Salvianolic acid A as a multifunctional agent ameliorates doxorubicin-induced nephropathy in rats. Sci Rep 5:12273CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fan Y, Luo QP, Wei JJ, Lin RH, Lin LL, Li YK, Chen ZR, Chen Q, Lin W (2018) Mechanism of salvianolic acid B neuroprotection against ischemia/reperfusion induced cerebral injury. Brain Res 1679:125–133CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fang CY, Wu CZ, Chen PN, Chang YC, Chuang CY, Lai CT, Yang SF, Tsai LL (2018) Antimetastatic potentials of salvianolic acid A on oral squamous cell carcinoma by targeting MMP-2 and the c-Raf/MEK/ERK pathway. Environ Toxicol 33(5):545–554CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gangappa SN, Prasad VBR, Chattopadhyay S (2010) Functional interconnection of MYC2 and SPA1 in the photomorphogenic seedling development of Arabidopsis. Plant Physiol 154(3):1210–1219CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gong L, Di C, Xia X, Wang J, Chen G, Shi J, Chen P, Xu H, Zhang W (2016) AKT/mTOR signaling pathway is involved in salvianolic acid B-induced autophagy and apoptosis in hepatocellular carcinoma cells. Int J Oncol 49(6):2538–2548CrossRefPubMedPubMedCentralGoogle Scholar
  19. Guillon S, Trémouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9(3):341–346CrossRefPubMedPubMedCentralGoogle Scholar
  20. Guo P, Wang J, Gao W, Liu X, Wu S, Wan B, Xu L, Li Y (2018) Salvianolic acid B reverses multidrug resistance in nude mice bearing human colon cancer stem cells. Mol Med Rep 18(2):1323–1334PubMedPubMedCentralGoogle Scholar
  21. Han JY, Li Q, Ma ZZ, Fan JY (2017) Effects and mechanisms of compound Chinese medicine and major ingredients on microcirculatory dysfunction and organ injury induced by ischemia/reperfusion. Pharm Ther 177:146–173CrossRefGoogle Scholar
  22. Hao GP, Ji HW, Li YL, Shi RJ, Wang JM, Feng L, Huang LQ (2012) Exogenous ABA and polyamines enhanced salvianolic acids contents in hairy root cultures of Salvia miltiorrhiza Bge. f. alba. Plant Omics 5(5):446Google Scholar
  23. Heo JY, Im DS (2019) Anti-allergic effects of salvianolic acid A and tanshinone IIA from Salvia miltiorrhiza determined using in vivo and in vitro experiments. Int Immunopharmacol 67:69–77CrossRefGoogle Scholar
  24. Hou X, Shao F, Ma Y, Lu S (2013) The phenylalanine ammonia-lyase gene family in Salvia miltiorrhiza: genome-wide characterization, molecular cloning and expression analysis. Mol Biol Rep 40(7):4301–4310CrossRefGoogle Scholar
  25. Hou BY, Qiang GF, Zhao YR, Yang XY, Chen X, Yan Y, Wang XB, Liu C, Zhang L, Du GH (2017) Salvianolic acid A protects against diabetic nephropathy through ameliorating glomerular endothelial dysfunction via inhibiting AGE-RAGE signaling. Cell Physiol Biochem 44(6):2378–2394CrossRefGoogle Scholar
  26. Huang BB, Duan YB, Yi B, Sun LN, Lu B, Yu XH, Sun H, Zhang W, Chen WS (2008a) Characterization and expression profiling of cinnamate 4-hydroxylase gene from Salvia miltiorrhiza in rosmarinic acid biosynthesis pathway. Russ J Plant Physiol 55(3):390CrossRefGoogle Scholar
  27. Huang BB, Yi B, Duan YB, Sun LN, Yu XH, Guo J, Chen WS (2008b) Characterization and expression profiling of tyrosine aminotransferase gene from Salvia miltiorrhiza (Dan-shen) in rosmarinic acid biosynthesis pathway. Mol Biol Rep 35(4):601–612CrossRefGoogle Scholar
  28. Huang ZS, Zeng CL, Zhu LJ, Jiang L, Li N, Hu H (2010) Salvianolic acid A inhibits platelet activation and arterial thrombosis via inhibition of phosphoinositide 3-kinase. J Thromb Haemost 8(6):1383–1393CrossRefGoogle Scholar
  29. Huang D, Wei X, Mu H, Pan C, Li Q, Hu B, Chang X, Yan L, Fan J, Liu Y, Luo J, Han J (2019) Total salvianolic acid injection prevents ischemia/reperfusion-induced myocardial injury via antioxidant mechanism involving mitochondrial respiratory chain through the upregulation of sirtuin1 and sirtuin3. Shock 51(6):745–756CrossRefPubMedPubMedCentralGoogle Scholar
  30. Huttunen S, Toivanen M, Liu C, Tikkanen-Kaukanen C (2016) Novel anti-infective potential of salvianolic acid B against human serious pathogen Neisseria meningitidis. BMC Res Notes 9(1):25CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jiao M, Cao R, Chen H, Hao W, Dong JE (2012) Effects of salicylic acid on synthesis of rosmarinic acid and related enzymes in the suspension cultures of Salvia miltiorrhiza. Chin J Biotechnol 28(3):320–328Google Scholar
  32. Jin XQ, Chen ZW, Tan RH, Zhao SJ, Hu ZB (2012) Isolation and functional analysis of 4-coumarate: coenzyme A ligase gene promoters from Salvia miltiorrhiza. Biol Plant 56(2):261–268CrossRefGoogle Scholar
  33. Jing Z, Fei W, Zhou J, Zhang L, Chen L, Zhang X, Liang X, Xie J, Fang Y, Sui X, Han W, Pan H (2016) Salvianolic acid B, a novel autophagy inducer, exerts antitumor activity as a single agent in colorectal cancer cells. Oncotarget 7(38):61509–61519CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kai GY, Zhang A, Guo YY, Li L, Cui LJ, Luo XQ, Liu C, Xiao JB (2012) Enhancing the production of tropane alkaloids in transgenic Anisodus acutangulus hairy root cultures by over-expressing tropinone reductase I and hyoscyamine-6β-hydroxylase. Mol BioSyst 8(11):2883–2890CrossRefGoogle Scholar
  35. Katiyar A, Smita S, Lenka SK, Rajwanshi R, Chinnusamy V, Bansal KC (2012) Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genom 13(1):544CrossRefGoogle Scholar
  36. Kazan K, Manners JM (2013) MYC2: the master in action. Mol Plant 6(3):686–703CrossRefGoogle Scholar
  37. Kong WJ, Zhang SS, Zhao YL, Wu MQ, Chen P, Wu XR, Ma XP, Guo WY, Yang MH (2017) Combination of chemical fingerprint and bioactivity evaluation to explore the antibacterial components of Salvia miltiorrhiza. Sci Rep 7(1):8112CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lee YW, Kim DH, Jeon SJ, Park SJ, Kim JM, Jung JM, Lee HE, Bae SG, Oh HK, Son KH, Ryu JH (2013) Neuroprotective effects of salvianolic acid B on an Abeta25-35 peptide-induced mouse model of Alzheimer’s disease. Eur J Pharmacol 704(1–3):70–77CrossRefGoogle Scholar
  39. Li CL, Lu SF (2014) Genome-wide characterization and comparative analysis of R2R3-MYB transcription factors shows the complexity of MYB-associated regulatory networks in Salvia miltiorrhiza. BMC Genom 15(1):277CrossRefGoogle Scholar
  40. Li YL, Xin XM, Chang ZY, Shi RJ, Miao ZM, Ding J, Hao GP (2015) The endophytic fungi of Salvia miltiorrhiza Bge. f. alba are a potential source of natural antioxidants. Bot Stud 56(1):5Google Scholar
  41. Li L, Xu T, Du Y, Pan D, Wu W, Zhu H, Zhang Y, Li D (2016a) Salvianolic acid A attenuates cell apoptosis, oxidative stress, Akt and NF-κB activation in angiotensin-II induced murine peritoneal macrophages. Curr Pharm Biotechnol 17(3):283–290Google Scholar
  42. Li XQ, Zhai X, Shu ZH, Dong RF, Ming QL, Qin LP, Zheng CJ (2016b) Phoma glomerata D14: an endophytic fungus from Salvia miltiorrhiza that produces salvianolic acid C. Curr Microbiol 73(1):31–37CrossRefGoogle Scholar
  43. Li SS, Wu YC, Kuang J, Wang HQ, Du TZ, Huang YY, Zhang Y, Cao XY, Wang ZZ (2018) SmMYB111 is a key factor to phenolic acid biosynthesis and interacts with both SmTTG1 and SmbHLH51 in Salvia miltiorrhiza. J Agric Food Chem 66(30):8069–8078CrossRefPubMedPubMedCentralGoogle Scholar
  44. Liang ZS, Ma YN, Xu T, Cui BM, Liu Y, Guo ZX, Yang DF (2013) Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in Salvia miltiorrhiza Bunge hairy roots. PLoS ONE 8(9):e72806CrossRefPubMedPubMedCentralGoogle Scholar
  45. Liu L, Li J, Zhang Y, Zhang S, Ye J, Wen Z, Ding J, Kunapuli SP, Luo X, Ding Z (2014) Salvianolic acid B inhibits platelets as a P2Y12 antagonist and PDE inhibitor: evidence from clinic to laboratory. Thromb Res 134(4):866–876CrossRefGoogle Scholar
  46. Liu H, Ma S, Xia H, Lou H, Zhu F, Sun L (2018) Anti-inflammatory activities and potential mechanisms of phenolic acids isolated from Salvia miltiorrhiza f. alba roots in THP-1 macrophages. J Ethnopharmacol 222:201–207CrossRefGoogle Scholar
  47. Lou JF, Fu LY, Luo RY, Wang XH, Luo HY, Zhou LG (2013) Endophytic fungi from medicinal herb Salvia miltiorrhiza Bunge and their antimicrobial activity. Afr J microbiol Res 7(47):5343–5349CrossRefGoogle Scholar
  48. Lv HD, Wang L, Shen JC, Hao SJ, Ming AM, Wang XD, Su F, Zhang ZC (2015) Salvianolic acid B attenuates apoptosis and inflammation via SIRT1 activation in experimental stroke rats. Brain Res Bull 115:30–36CrossRefGoogle Scholar
  49. Ma XH, Ma Y, Tang JF, He YL, Liu YC, Ma XJ, Shen Y, Cui GH, Lin HX, Guo J, Huang LQ (2015) The biosynthetic pathways of tanshinones and phenolic acids in Salvia miltiorrhiza. Molecules 20(9):16235–16254CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ma ZG, Xia HQ, Cui SL, Yu J (2017) Attenuation of renal ischemic reperfusion injury by salvianolic acid B via suppressing oxidative stress and inflammation through PI3K/Akt signaling pathway. Braz J Med Biol Res 50(6):e5954CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mahmood Q, Wang GF, Wu G, Wang H, Zhou CX, Yang HY, Liu ZR, Han F, Zhao K (2017) Salvianolic acid A inhibits calpain activation and eNOS uncoupling during focal cerebral ischemia in mice. Phytomedicine 25:8–14CrossRefGoogle Scholar
  52. Meng D, Li J, Li H, Wang K (2019) Salvianolic acid B remits LPS-induced injury by up-regulating miR-142-3p in MH7A cells. Biomed Pharmacother 115:108876CrossRefGoogle Scholar
  53. Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1(1):69–79Google Scholar
  54. Pei T, Ma P, Ding K, Liu S, Jia Y, Ru M, Dong J, Liang ZS (2017) SmJAZ8 acts as a core repressor regulating JA-induced biosynthesis of salvianolic acids and tanshinones in Salvia miltiorrhiza hairy roots. J Exp Bot 69(7):1663–1678CrossRefGoogle Scholar
  55. Pei R, Si T, Lu Y, Zhou JX, Jiang L (2018) Salvianolic acid A, a novel PI3K/Akt inhibitor, induces cell apoptosis and suppresses tumor growth in acute myeloid leukemia. Leuk Lymphoma 59(8):1959–1967CrossRefGoogle Scholar
  56. Petersen M, Simmonds MS (2003) Rosmarinic acid. Phytochemistry 62(2):121–125CrossRefGoogle Scholar
  57. Pezeshki S, Petersen M (2018) Rosmarinic acid and related metabolites. In: Biotechnology of natural products. Springer, Cham, pp 25–60Google Scholar
  58. Qian W, Wang Z, Xu T, Li D (2019) Anti-apoptotic effects and mechanisms of salvianolic acid A on cardiomyocytes in ischemia-reperfusion injury. Histol Histopathol 34(3):223–231PubMedGoogle Scholar
  59. Qiang G, Yang X, Shi L, Zhang H, Chen B, Zhao Y, Zu M, Zhou D, Guo J, Yang H, Zhang L, Du G (2015) Antidiabetic effect of salvianolic acid A on diabetic animal models via AMPK activation and mitochondrial regulation. Cell Physiol Biochem 36(1):395–408CrossRefGoogle Scholar
  60. Rahbardar MG, Amin B, Mehri S, Mirnajafi-Zadeh SJ, Hosseinzadeh H (2018) Rosmarinic acid attenuates development and existing pain in a rat model of neuropathic pain: an evidence of anti-oxidative and anti-inflammatory effects. Phytomedicine 40:59–67CrossRefPubMedPubMedCentralGoogle Scholar
  61. Raoufi S, Baluchnejadmojarad T, Roghani M, Ghazanfari T, Khojasteh F, Mansouri M (2015) Antidiabetic potential of salvianolic acid B in multiple low-dose streptozotocin-induced diabetes. Pharm Biol 53(12):1803–1809CrossRefGoogle Scholar
  62. Sha W, Zhou YF, Ling ZQ, Xie GQ, Pang XW, Wang P, Gu XB (2018) Antitumor properties of salvianolic acid B against triple-negative and hormone receptor-positive breast cancer cells via ceramide-mediated apoptosis. Oncotarget 9(91):36331CrossRefPubMedPubMedCentralGoogle Scholar
  63. Shi M, Luo XQ, Ju GH, Yu XH, Hao XL, Huang Q, Xiao JB, Cui LJ, Kai GY (2014) Increased accumulation of the cardio-cerebrovascular disease treatment drug tanshinone in Salvia miltiorrhiza hairy roots by the enzymes 3-hydroxy-3-methylglutaryl CoA reductase and 1-deoxy-d-xylulose 5-phosphate reductoisomerase. Func Integr Genomics 14(3):603–615CrossRefGoogle Scholar
  64. Shi X, Sun RM, Zhao Y, Fu R, Wang RW, Zhao HY, Wang ZC, Tang F, Zhang N, Tian XF, Yao JH (2018) Promotion of autophagosome–lysosome fusion via salvianolic acid A-mediated SIRT1 up-regulation ameliorates alcoholic liver disease. RSC Adv 8(36):20411–20422CrossRefGoogle Scholar
  65. Shi M, Huang FF, Deng CP, Wang Y, Kai GY (2019) Bioactivities, biosynthesis and biotechnological production of phenolic acids in Salvia miltiorrhiza. Crit Rev Food Sci 59(6):953–964CrossRefGoogle Scholar
  66. Song J (2010) Function analysis of the genes involved in rosmarinic acid biosynthesis pathway in Salvia miltiorrhiza Bunge. Unpublished Ph.D. thesis, Shaanxi Normal University, Xian, ChinaGoogle Scholar
  67. Song J, Wang ZZ (2009) Molecular cloning, expression and characterization of a phenylalanine ammonia-lyase gene (SmPAL1) from Salvia miltiorrhiza. Mol Biol Rep 36(5):939CrossRefGoogle Scholar
  68. Song J, Wang ZZ (2011) RNAi-mediated suppression of the phenylalanine ammonia-lyase gene in Salvia miltiorrhiza causes abnormal phenotypes and a reduction in rosmarinic acid biosynthesis. J Plant Res 124(1):183–192CrossRefGoogle Scholar
  69. Sun WY, Tong L, Miao JZ, Huang JY, Li DX, Li YF, Xiao HT, Sun H, Bi KS (2016) Separation and analysis of phenolic acids from Salvia miltiorrhiza and its related preparations by off-line two-dimensional hydrophilic interaction chromatography × reversed-phase liquid chromatography coupled with ion trap time-of-flight mass spectrometry. J Chromatogr A 1431:79–88CrossRefPubMedPubMedCentralGoogle Scholar
  70. Sun MH, Wang Y, Huang Q, Yuan TP, Wang Q, Wang C, Zhou W, Kai GY (2019) The biosynthesis of phenolic acids is positively regulated by the JA-responsive transcription factor ERF115 in Salvia miltiorrhiza. J Exp Bot 70(1):243–254CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tang XL, Yan L, Zhu L, Jiao DM, Chen J, Chen QY (2017) Salvianolic acid A reverses cisplatin resistance in lung cancer A549 cells by targeting c-met and attenuating Akt/mTOR pathway. J Pharmacol Sci 135(1):1–7CrossRefPubMedPubMedCentralGoogle Scholar
  72. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He S, Howe G, Browse J (2007) JAZ repressor proteins are targets of the SCF COI1 complex during jasmonate signalling. Nature 448(7154):661CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wang YM, Cao JL (2016) Advances in the chemical and pharmacological studies of phenolic acids in Salvia miltiorrhiza. World Chin Med 11(6):1126–1130Google Scholar
  74. Wang W, Hu W (2018) Salvianolic acid B recovers cognitive deficits and angiogenesis in a cerebral small vessel disease rat model via the STAT3/VEGF signaling pathway. Mol Med Rep 17(2):3146–3151PubMedPubMedCentralGoogle Scholar
  75. Wang JW, Wu JY (2013) Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures. Adv Biochem Eng Biotechnol 134:55–89PubMedPubMedCentralGoogle Scholar
  76. Wang F, Liu YY, Liu LY, Zeng QJ, Wang CS, Sun K, Yang JY, Guo J, Fan JY, Han JY (2009) The attenuation effect of 3,4-dihydroxy-phenyl lactic acid and salvianolic acid B on venular thrombosis induced in rat mesentery by photochemical reaction. Clin Hemorheol Microcirc 42(1):7–18PubMedPubMedCentralGoogle Scholar
  77. Wang B, Sun W, Li QS, Li Y, Luo HM, Song JY, Sun C, Qian J, Zhu YJ, Hayward A, Xu HB (2015a) Genome-wide identification of phenolic acid biosynthetic genes in Salvia miltiorrhiza. Planta 241(3):711–725CrossRefPubMedPubMedCentralGoogle Scholar
  78. Wang X, Wang CY, Zhang LJ, Li YJ, Wang SJ, Wang JD, Yuan CY, Niu J, Wang CS, Lu GM (2015b) Salvianolic acid A shows selective cytotoxicity against multidrug-resistant MCF-7 breast cancer cells. Anticancer Drugs 26(2):210–223CrossRefPubMedPubMedCentralGoogle Scholar
  79. Wang XK, Qi D, Fu FH, LiX Liu Y, Ji K, Gao ZF, Kong LL, Yu C, Xie H, Yue G, Zhu H, Liu K, Fan HY (2019) Therapeutic and antiproteinuric effects of salvianolic acid A in combined with low-dose prednisone in minimal change disease rats: Involvement of PPARγ/Angptl4 and Nrf2/HO-1 pathways. Eur J Pharmacol. Scholar
  80. Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111(6):1021–1058Google Scholar
  81. Wu CF, Karioti A, Rohr D, Bilia AR, Efferth T (2016) Production of rosmarinic acid and salvianolic acid B from callus culture of Salvia miltiorrhiza with cytotoxicity towards acute lymphoblastic leukemia cells. Food Chem 201:292–297CrossRefGoogle Scholar
  82. Wu YC, Zhang Y, Li L, Guo XR, Wang B, Cao XY, Wang ZZ (2018) AtPAP1 interacts with and activates SmbHLH51, a positive regulator to phenolic acids biosynthesis in Salvia miltiorrhiza. Front Plant Sci 9:1687CrossRefPubMedPubMedCentralGoogle Scholar
  83. Xia ZB, Yuan YJ, Zhang QH, Li H, Dai JL, Min JK (2018) Salvianolic acid B suppresses inflammatory mediator levels by downregulating NF-κB in a rat model of rheumatoid arthritis. Med Sci Monit 24:2524–2532CrossRefPubMedPubMedCentralGoogle Scholar
  84. Xiao Y, Gao SH, Di P, Chen JF, Chen WS, Zhang L (2009) Methyl jasmonate dramatically enhances the accumulation of phenolic acids in Salvia miltiorrhiza hairy root cultures. Physiol Plant 137(1):1–9CrossRefGoogle Scholar
  85. Xiao Y, Zhang L, Gao SH, Saechao S, Di P, Chen JF, Chen WS (2011) The c4h, tat, hppr and hppd genes prompted engineering of rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. PLoS ONE 6(12):e29713CrossRefPubMedPubMedCentralGoogle Scholar
  86. Xing BC, Yang DF, Guo WL, Liang ZS, Yan XJ, Zhu YH, Liu Y (2015) Ag+ as a more effective elicitor for production of tanshinones than phenolic acids in Salvia miltiorrhiza hairy roots. Molecules 20(1):309–324CrossRefGoogle Scholar
  87. Xing BC, Liang LJ, Liu L, Hou ZN, Yang DF, Yan KJ, Zhang XM, Liang ZS (2018a) Overexpression of SmbHLH148 induced biosynthesis of tanshinones as well as phenolic acids in Salvia miltiorrhiza hairy roots. Plant Cell Rep 37(12):1681–1692CrossRefPubMedPubMedCentralGoogle Scholar
  88. Xing BC, Yang DF, Liu L, Han RL, Sun YF, Liang ZS (2018b) Phenolic acid production is more effectively enhanced than tanshinone production by methyl jasmonate in Salvia miltiorrhiza hairy roots. PCTOC 134(1):119–129CrossRefGoogle Scholar
  89. Xiong W, Liu LX, Wu C, Yang C, Wu QY (2010) 13C-tracer and gas chromatography-mass spectrometry analyses reveal metabolic flux distribution in the oleaginous microalga Chlorella protothecoides. Plant Physiol 154(2):1001–1011CrossRefPubMedPubMedCentralGoogle Scholar
  90. Yan Q, Shi M, Ng J, Wu JY (2006) Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. Plant Sci 170(4):853–858CrossRefGoogle Scholar
  91. Yang RX, Huang SY, Yan FF, Lu XT, Xing YF, Liu Y, Liu YF, Zhao YX (2010) Danshensu protects vascular endothelia in a rat model of hyperhomocysteinemia. Acta Pharmacol Sin 31(10):1395–1400CrossRefPubMedPubMedCentralGoogle Scholar
  92. Yang N, Zhou WB, Su J, Wang XF, Li L, Wang LR, Cao XY, Wang ZZ (2017) Overexpression of SmMYC2 increases the production of phenolic acids in Salvia miltiorrhiza. Front Plant Sci 8:1804CrossRefPubMedPubMedCentralGoogle Scholar
  93. Yang YF, Zhang LC, La XQ, Li ZY, Li HQ, Guo SJ (2019) Salvianolic acid A inhibits tumor-associated angiogenesis by blocking GRP78 secretion. Naunyn Schmiedebergs Arch Pharmacol 392(4):467–480CrossRefGoogle Scholar
  94. Yu DS, Wang YS, Bi YL, Guo ZP, Yuan YJ, Tong SM, Su RC, Ge LH, Wang J, Pan YL, Guan TT, Cao Y (2017) Salvianolic acid A ameliorates the integrity of blood-spinal cord barrier via miR-101/Cul3/Nrf2/HO-1 signaling pathway. Brain Res 1657:279–287CrossRefGoogle Scholar
  95. Yu HZ, Guo WL, Yang DF, Hou ZN, Liang ZS (2018) Transcriptional profiles of SmWRKY family genes and their putative roles in the biosynthesis of tanshinone and phenolic acids in Salvia miltiorrhiza. Int J Mol Sci 19(6):1593CrossRefPubMedPubMedCentralGoogle Scholar
  96. Yukimune Y, Tabata H, Higashi Y, Hara Y (1996) Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nat Biotechnol 14(9):1129–1132CrossRefGoogle Scholar
  97. Zhai X, Luo D, Li X, Han T, Jia M, Kong ZY, Ji JC, Rahman K, Qin LP, Zheng CJ (2018) Endophyte Chaetomium globosum D38 promotes bioactive constituents accumulation and root production in Salvia miltiorrhiza. Front Microbiol 8:2694CrossRefPubMedPubMedCentralGoogle Scholar
  98. Zhang Y, Yan YP, Wang ZZ (2010) The Arabidopsis PAP1 transcription factor plays an important role in the enrichment of phenolic acids in Salvia miltiorrhiza. J Agric Food Chem 58(23):12168–12175CrossRefGoogle Scholar
  99. Zhang HA, Gao M, Zhang L, Zhao Y, Shi LL, Chen BN, Wang YH, Wang SB, Du GH (2012) Salvianolic acid A protects human SH-SY5Y neuroblastoma cells against H2O2-induced injury by increasing stress tolerance ability. Biochem Biophys Res Commun 421(3):479–483CrossRefGoogle Scholar
  100. Zhang SC, Ma PD, Yang DF, Li WJ, Liang ZS, Liu Y, Liu FH (2013) Cloning and characterization of a putative R2R3 MYB transcriptional repressor of the rosmarinic acid biosynthetic pathway from Salvia miltiorrhiza. PLoS ONE 8(9):e73259CrossRefPubMedPubMedCentralGoogle Scholar
  101. Zhang SC, Yan Y, Wang BQ, Liang ZS, Liu Y, Liu FH, Qi ZH (2014a) Selective responses of enzymes in the two parallel pathways of rosmarinic acid biosynthetic pathway to elicitors in Salvia miltiorrhiza hairy root cultures. J Biosci Bioeng 117(5):645–651CrossRefGoogle Scholar
  102. Zhang XC, Chen JQ, Li B (2014b) Salvianolic acid A suppresses CCL-20 expression in TNF-α-treated macrophages and ApoE-deficient mice. J Cardiovasc Pharmacol 64(4):318–325CrossRefGoogle Scholar
  103. Zhang Y, Yan YP, Wu YC, Hua WP, Chen C, Ge Q, Wang ZZ (2014c) Pathway engineering for phenolic acid accumulations in Salvia miltiorrhiza by combinational genetic manipulation. Metab Eng 21:71–80CrossRefGoogle Scholar
  104. Zhang X, Wu Q, Lu Y, Wan J, Dai H, Zhou X, Lv S, Chen X, Zhang X, Hang C, Wang J (2018a) Cerebroprotection by salvianolic acid B after experimental subarachnoid hemorrhage occurs via Nrf2- and SIRT1-dependent pathways. Free Radical Biol Med 124:504–516CrossRefGoogle Scholar
  105. Zhang JL, Zhang X, Zhang JB, Li MY, Chen DJ, Wu T (2018b) Minor compounds of the high purity salvianolic acid B freeze-dried powder from Salvia miltiorrhiza and antibacterial activity assessment. Nat Prod Res 32(10):1198–1202CrossRefGoogle Scholar
  106. Zhang JY, Wang M, Wang RY, Sun X, Du YY, Ye JX, Sun GB, Sun XB (2018c) Salvianolic acid A ameliorates arsenic trioxide-induced cardiotoxicity through decreasing cardiac mitochondrial injury and promotes its anticancer activity. Front Pharmacol 9:487CrossRefPubMedPubMedCentralGoogle Scholar
  107. Zhang W, Song JK, Zhang X, Zhou QM, He GR, Xu XN, Yan R, Zhou WX, Du GH (2018d) Salvianolic acid A attenuates ischemia reperfusion induced rat brain damage by protecting the blood brain barrier through MMP-9 inhibition and anti-inflammation. Chin J Nat Med 16(3):184–193PubMedGoogle Scholar
  108. Zhang H, Wang Y, Gao C, Gu Y, Huang J, Wang J, Wang J, Zhang Z (2018e) Salvianolic acid A attenuates kidney injury and inflammation by inhibiting NF-κB and p38 MAPK signaling pathways in 5/6 nephrectomized rats. Acta Pharmacol Sin 39(12):1855–1864CrossRefGoogle Scholar
  109. Zhang HF, Wang JH, Wang YL, Gao C, Gu YT, Huang J, Wang JH, Zhang Z (2019a) Salvianolic acid A protects the kidney against oxidative stress by activating the Akt/GSK-3β/Nrf2 signaling pathway and inhibiting the NF-κB signaling pathway in 5/6 nephrectomized rats. Oxid Med Cell Longev 2019:2853534PubMedPubMedCentralGoogle Scholar
  110. Zhang YF, Xu LW, Liang K, Zhou LH, Ge YZ, Jia RP (2019b) Protective effect of salvianolic acid B against oxidative injury associated with cystine stone formation. Urolithiasis. Scholar
  111. Zhao SJ, Hu ZB, Liu D, Leung FC (2006) Two divergent members of 4-coumarate: coenzyme A ligase from Salvia miltiorrhiza Bunge: cDNA cloning and functional study. J Integr Plant Biol 48(11):1355–1364CrossRefGoogle Scholar
  112. Zhao GR, Zhang HM, Ye TX, Xiang ZJ, Yuan YJ, Guo ZX, Zhao LB (2008) Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B. Food Chem Toxicol 46(1):73–81CrossRefPubMedPubMedCentralGoogle Scholar
  113. Zhao J, Yang XC, Fujino M, Ichimaru N, Que W, Li XK, Takahara S (2019) Salvianolic acid B ameliorates liver injury in a murine aGvHD model by decreasing inflammatory responses via upregulation of HO-1. Transpl Immunol. Scholar
  114. Zheng X, Chen S, Yang Q, Cai J, Zhang W, You H, Xing J, Dong Y (2015) Salvianolic acid A reverses the paclitaxel resistance and inhibits the migration and invasion abilities of human breast cancer cells by inactivating transgelin 2. Cancer Biol Ther 16(9):1407–1414CrossRefPubMedPubMedCentralGoogle Scholar
  115. Zhou ML, Memelink J (2016) Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol Adv 34(4):441–449CrossRefPubMedPubMedCentralGoogle Scholar
  116. Zhou Z, Zhang Y, Ding XR, Chen SH, Yang J, Wang XJ, Jia GL, Chen HS, Bo XC, Wang SQ (2007) Protocatechuic aldehyde inhibits hepatitis B virus replication both in vitro and in vivo. Antiviral Res 74(1):59–64CrossRefPubMedPubMedCentralGoogle Scholar
  117. Zhou YQ, Li WZ, Xu L, Chen L (2011) In Salvia miltiorrhiza, phenolic acids possess protective properties against amyloid β-induced cytotoxicity, and tanshinones act as acetylcholinesterase inhibitors. Environ Toxicol Pharmacol 31(3):443–452CrossRefPubMedPubMedCentralGoogle Scholar
  118. Zhou XL, Chan SW, Tseng HL, Deng Y, Hoi PM, Choi PS, Or PM, Yang JM, Lam FF, Lee SM, Leung GP, Kong SK, Ho HP, Kwan YW, Yeung JHK (2012) Danshensu is the major marker for the antioxidant and vasorelaxation effects of Danshen (Salvia miltiorrhiza) water-extracts produced by different heat water-extractions. Phytomedicine 19(14):1263–1269CrossRefPubMedPubMedCentralGoogle Scholar
  119. Zhou J, Qu XD, Li ZY, Wei J, Liu Q, Ma YH, He JJ (2014) Salvianolic acid B attenuates toxin-induced neuronal damage via Nrf2-dependent glial cells-mediated protective activity in Parkinson’s disease models. PLoS ONE 9(7):e101668CrossRefPubMedPubMedCentralGoogle Scholar
  120. Zhou R, Long H, Zhang B, Lao Z, Zheng Q, Wang T, Zhang Y, Wu Q, Lai X, Li G, Lin L (2019) Salvianolic acid B, an antioxidant derived from Salvia militarize, protects mice against γ-radiation-induced damage through Nrf2/Bach1. Mol Med Rep 19(2):1309–1317PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Guoyin Kai
    • 1
    Email author
  • Shucan Liu
    • 1
  • Min Shi
    • 1
  • Bing Han
    • 1
  • Xiaolong Hao
    • 1
  • Zhixiang Liu
    • 1
  1. 1.Laboratory of Medicinal Plant Biotechnology, College of PharmacyZhejiang Chinese Medical UniversityHangzhouPeople’s Republic of China

Personalised recommendations