Advertisement

Synthetic Seeds: Prospects and Advances in Cryopreservation

  • Débora de Oliveira Prudente
  • Lucas Batista de Souza
  • Renato Paiva
Chapter

Abstract

Long-term storage of synthetic seeds can be accomplished using cryopreservation techniques. Cryopreservation allows the viability of encapsulated plant material to be conserved and maintained over a long period without modifications or genetic changes because the material is exposed to ultralow temperatures in liquid nitrogen (−196 °C), which decreases or even halts cellular metabolism. Cryopreservation has been found to be practical and efficient for the conservation of many species due to the small volume of material needed for storage, the simplification of transportation procedures and the minimal maintenance required compared to conventional storage methods. The main cryopreservation techniques applied to synthetic seeds are encapsulation-dehydration and encapsulation-vitrification. These techniques have been shown to be highly applicable for small explants that are sensitive to the conventional cryopreservation process, such as meristems and somatic embryos. However, the success of cryopreservation techniques for synthetic seeds depends on the type of encapsulated explant, on the capsule constitution and consistency and on research on the different cryopreservation stages in order to optimize the survival and regeneration of the plant material. Therefore, the present chapter is based on studies of the different stages of cryopreservation related to encapsulation techniques developed over time and on the major advances and innovations in cryopreservation.

Keywords

Long-term storage Plant germplasm Cryopreservation Encapsulation-dehydration Encapsulation-vitrification 

References

  1. Agbidinoukoun A, Doussoh A, Soussou Dangou J, Ahanhanzo C, Engelmann F (2018) Used of encapsulation-dehydration technique for short-term preservation of endangered sweet potato (Ipomoea batatas) cultivars. In Vitro Cell Dev Biol Plant 54:S40–S41Google Scholar
  2. Ai P-F, Lu L-P, Song J-J (2012) Cryopreservation of in vitro-grown shoot-tips of Rabdosia rubescens by encapsulation-dehydration and evaluation of their genetic stability. Plant Cell Tissue Organ Cult 108:381–387CrossRefGoogle Scholar
  3. Al-Abdallat AM, Shibli RA, Akash MW, Rabbaa M, Al-Qudah T (2017) In vitro preservation of transgenic tomato (Solanum lycopersicum L.) plants overexpressing the stress-related SlAREB1 transcription factor. Int J Mol Sci 18:19.  https://doi.org/10.3390/ijms18071477 PubMedCentralCrossRefGoogle Scholar
  4. Al-Qurainy F et al (2017) Assessing genetic fidelity in regenerated plantlets of date palm cultivars after cryopreservation. Fresenius Environ Bull 26:1727–1735Google Scholar
  5. Bachiri Y, Gazeau C, Hansz J, Morisset C, Dereuddre J (1995) Successful cryopreservation of suspension cells by encapsulation-dehydration. Plant Cell, Tissue and Organ Cult 43(3):241–248Google Scholar
  6. Barraco G, Sylvestre I, Engelmann F (2011) Comparing encapsulation-dehydration and droplet-vitrification for cryopreservation of sugarcane (Saccharum spp.) shoot tips. Sci Hortic 130:320–324.  https://doi.org/10.1016/j.scienta.2011.07.003 CrossRefGoogle Scholar
  7. Baťková P, Pospíšilová J, Synková H (2008) Production of reactive oxygen species and development of antioxidative systems during in vitro growth and ex vitro transfer. Biol Plant 52:413–422.  https://doi.org/10.1007/s10535-008-0085-5 CrossRefGoogle Scholar
  8. Bayati S, Shams-Bakhsh M, Moini A (2011) Elimination of Grapevine virus A (GVA) by cryotherapy and electrotherapy. J Agric Sci Technol 13:442–450Google Scholar
  9. Benson EE (2008) Cryopreservation theory. In: Plant cryopreservation: A practical guide. Springer, pp, pp 15–32CrossRefGoogle Scholar
  10. Bettoni JC, Dalla Costa M, Souza JA, Volk GM, Nickel O, da Silva FN, Kretzschmar AA (2018) Cryotherapy by encapsulation-dehydration is effective for in vitro eradication of latent viruses from ‘Marubakaido’ apple rootstock. J Biotechnol 269:1–7.  https://doi.org/10.1016/j.jbiotec.2018.01.014 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bhojwani SS, Dantu PK (2013) Production of virus-free plants. In: Plant tissue culture: an introductory Text. Springer, pp 227–243Google Scholar
  12. Bi WL et al (2017) Cryopreservation of grapevine (Vitis spp.)-a review. In Vitro Cell Dev Biol Plant 53:449–460.  https://doi.org/10.1007/s11627-017-9822-9 CrossRefGoogle Scholar
  13. Bi WL, Hao XY, Cui ZH, Volk GM, Wang QC (2018) Droplet-vitrification cryopreservation of in vitro-grown shoot tips of grapevine (Vitis spp.). In Vitro Cell Dev Biol Plant 54:590–599.  https://doi.org/10.1007/s11627-018-9931-0 CrossRefGoogle Scholar
  14. Bonnart R, Volk GM (2010) Increased efficiency using the encapsulation-dehydration cryopreservation technique for Arabidopsis thaliana. CryoLetters 31:200–205Google Scholar
  15. Bradaï F, Almagro-Bastante J, Sánchez-Romero C (2017) Cryopreservation of olive somatic embryos using the droplet-vitrification method: the importance of explant culture conditions. Sci Hortic 218:14–22CrossRefGoogle Scholar
  16. Brunakova K, Cellarova E (2016) Conservation strategies in the genus Hypericum via cryogenic treatment. Front Plant Sci 7:12.  https://doi.org/10.3389/fpls.2016.00558
  17. Bustam BM, Dixon K, Bunn E (2016) A cryopreservation protocol for ex situ conservation of terrestrial orchids using asymbiotic primary and secondary (adventitious) protocorms. In Vitro Cell Dev Biol Plant 52:185–195.  https://doi.org/10.1007/s11627-015-9732-7 CrossRefGoogle Scholar
  18. Carmona-Martin E, Regalado JJ, Peran-Quesada R, Encina CL (2018) Cryopreservation of rhizome buds of Asparagus officinalis L. (cv. Morado de Huetor) and evaluation of their genetic stability. Plant Cell Tissue Organ Cult 133:395–403.  https://doi.org/10.1007/s11240-018-1392-y CrossRefGoogle Scholar
  19. Cejas I, Vives K, Laudat T, González-Olmedo J, Engelmann F, Martínez-Montero ME, Lorenzo JC (2012) Effects of cryopreservation of Phaseolus vulgaris L. seeds on early stages of germination. Plant Cell Rep 31(11):2065–2073PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chandrabalan DC, Clyde MM, Normah MN (2011) Two-step preconditioning – a feasible method for cryopreservation of Fortunella polyandra shoot tips using vitrification Technique. In: Panis B, Lynch P (eds) International symposium on cryopreservation in horticultural species, vol 908. Acta Horticulturae. International Society of Horticultural Science, Leuven 1, pp 289–296Google Scholar
  21. Charoensub R, Hirai D, Sakai A (2004) Cryopreservation of in vitro-grown shoot tips of cassava by encapsulation-vitrification method. CryoLetters 25:51–58PubMedPubMedCentralGoogle Scholar
  22. Chen C (2004) Humidity in plant tissue culture vessels. Biosyst Eng 88:231–241CrossRefGoogle Scholar
  23. Chen HY, Liu J, Pan C, Yu JW, Wang QC (2018) In vitro regeneration of adventitious buds from leaf explants and their subsequent cryopreservation in highbush blueberry. Plant Cell Tissue Organ Cult 134:193–204.  https://doi.org/10.1007/s11240-018-1412-y CrossRefGoogle Scholar
  24. Choudhary R, Malik SK, Chaudhury R (2018) Development of an efficient cryoconservation protocol for Himalayan mulberry (Morus laevigata Wall. ex Brandis) using dormant axillary buds as explants. Indian J Exp Biol 56:342–350Google Scholar
  25. Ciringer T, Martin C, Sajna N, Kaligaric M, Ambrozic-Dolinsek J (2018) Cryopreservation of an endangered Hladnikia pastinacifolia Rchb. by shoot tip encapsulation-dehydration and encapsulation-vitrification. In Vitro Cell Dev Biol Plant 54:565–575.  https://doi.org/10.1007/s11627-018-9917-y CrossRefGoogle Scholar
  26. Clavero-Ramirez I, Galvez-Farfan J, Lopez-Aranda JM, Gonzalez-Benito ME (2005) Apex cryopreservation of several strawberry genotypes by two encapsulation-dehydration methods. CryoLetters 26:17–24PubMedPubMedCentralGoogle Scholar
  27. Coelho N, Gonzalez-Benito ME, Romano A (2014) Approaches for the cryopreservation of Plantago algarbiensis, a rare endemic species of the Algarve. CryoLetters 35:521–529Google Scholar
  28. Cordeiro SZ, Simas NK, Henriques AB, Sato A (2014) In vitro conservation of Mandevilla moricandiana (Apocynaceae): short-term storage and encapsulation-dehydration of nodal segments. In Vitro Cell Dev Biol Plant 50:326–336.  https://doi.org/10.1007/s11627-014-9600-x CrossRefGoogle Scholar
  29. Crowe JH, Crowe LM, Carpenter JF, Wistrom CA (1987) Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J 242:1PubMedPubMedCentralCrossRefGoogle Scholar
  30. Distabanjong K, Distabanjong C, Jang SW (2015) Developing regeneration system for cryopreservation in sugarcane (Saccharum officinarum L.). In: Canhoto JM, Correia SI (eds) Viii international symposium on in vitro culture and horticultural breeding, vol 1083. Acta Horticulturae. International Society Horticultural Science, Leuven 1, pp 427–433Google Scholar
  31. Dulloo M et al (2009) Cost efficiency of cryopreservation as a long-term conservation method for coffee genetic resources. Crop Sci 49:2123–2138CrossRefGoogle Scholar
  32. Dumet D, Engelmann F, Chabrillange N, Dussert S, Duval Y (1994) Effect of various sugars and polyols on the tolerance to desiccation and freezing of oil palm polyembryonic cultures. Seed Sci Res 4:307–313.  https://doi.org/10.1017/s0960258500002348 CrossRefGoogle Scholar
  33. Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433.  https://doi.org/10.1079/ivp2004541 CrossRefGoogle Scholar
  34. Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell Dev Biol Plant 47:5–16CrossRefGoogle Scholar
  35. Engelmann F, Takagi H (2000) Cryopreservation of tropical plant germplasm: current research progress and applications. JIRCAS, Tsukuba and IPGRI, RomeGoogle Scholar
  36. Fabian A, Jager K, Darko E, Barnabas B (2008) Cryopreservation of wheat (Triticum aestivum L.) egg cells by vitrification. Acta Physiol Plant 30:737–744.  https://doi.org/10.1007/s11738-008-0176-0 CrossRefGoogle Scholar
  37. Fabre J, Dereuddre J (1990) Encapsulation-dehydration: a new approach to cryopreservation of Solanum shoot tips. CryoLetters 11Google Scholar
  38. Fatima S, Mujib A, Nasim SA, Siddiqui ZH (2009) Cryopreservation of embryogenic cell suspensions of Catharanthus roseus L. (G) Don. Plant Cell Tissue Organ Cult 98:1–9.  https://doi.org/10.1007/s11240-009-9532-z CrossRefGoogle Scholar
  39. Feng C-H, Cui Z-H, Li B-Q, Chen L, Ma Y-L, Zhao Y-H, Wang Q-C (2013) Duration of sucrose preculture is critical for shoot regrowth of in vitro-grown apple shoot-tips cryopreserved by encapsulation-dehydration. Plant Cell Tissue Organ Cult 112:369–378CrossRefGoogle Scholar
  40. Fowler A, Toner M (2006) Cryo-injury and biopreservation. Ann N Y Acad Sci 1066:119–135CrossRefGoogle Scholar
  41. Galston AW, Sawhney RK (1990) Polyamines in plant physiology. Plant Physiol 94:406–410.  https://doi.org/10.1104/pp.94.2.406 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gamez-Pastrana R, Martinez-Ocampo Y, Beristain CI, Gonzalez-Arnao MT (2004) An improved cryopreservation protocol for pineapple apices using encapsulation-vitrification. CryoLetters 25:405–414PubMedPubMedCentralGoogle Scholar
  43. Garcia R, Pacheco G, Vianna M, Mansur E (2011) In vitro conservation of Passiflora suberosa L.: slow growth and cryopreservation. CryoLetters 32:377–388Google Scholar
  44. Gonzalez-Arnao MT, Engelmann F (2006) Cryopreservation of plant germplasm using the encapsulation-dehydration technique: review and case study on sugarcane. CryoLetters 27:155–168PubMedPubMedCentralGoogle Scholar
  45. Gonzalez-Arnao MT, Ravelo MM, Villavicencio CU, Montero MM, Engelmann F (1998) Cryopreservation of pineapple (Ananas comosus) apices. Cryo Lett 19:375–382Google Scholar
  46. Gonzalez-Arnao M, Engelmann F, Urra V, Morenza M, Rios A Cryopreservation of citrus apices using the encapsulation-dehydration technique. In: Cryopreservation of tropical plant germplasm: current research progress and application. Proceedings of an international workshop, Tsukuba, Japan, October, 1998a, 2000. International Plant Genetic Resources Institute (IPGRI), pp 217–221Google Scholar
  47. Gonzalez-Arnao M, Juarez J, Ortega C, Navarro L, Duran-Vila N (2003) Cryopreservation of ovules and somatic embryos of citrus using the encapsulation-dehydration technique. CryoLetters 24:85–94Google Scholar
  48. Gonzalez-Benito ME, Kremer C, Ibanez MA, Martin C (2016) Effect of antioxidants on the genetic stability of cryopreserved mint shoot tips by encapsulation-dehydration. Plant Cell Tissue Organ Cult 127:359–368.  https://doi.org/10.1007/s11240-016-1056-8 CrossRefGoogle Scholar
  49. Gulati R (2018) Strategies for sustaining plant germplasm evaluation and conservation a review. Life Sci Inform 4:313–320Google Scholar
  50. Halmagyi A, Deliu C (2011) Cryopreservation of redwood (Sequoia sempervirens (D. Don.) Endl.) shoot apices by encapsulation-dehydration. Contrib Bot 46Google Scholar
  51. Hirai D, Sakai A (1999) Cryopreservation of in vitro-grown meristems of potato (Solanum tuberosum L.) by encapsulation-vitrification. Potato Res 42:153–160CrossRefGoogle Scholar
  52. Javed SB, Alatar AA, Anis M, Faisal M (2017) Synthetic seeds production and germination studies, for short term storage and long distance transport of Erythrina variegata L.: a multipurpose tree legume. Ind Crop Prod 105:41–46CrossRefGoogle Scholar
  53. Jeon SM, Arun M, Lee S-Y, Kim CK (2015) Application of encapsulation-vitrification in combination with air dehydration enhances cryotolerance of Chrysanthemum morifolium shoots tips. Sci Hortic 194:91–99CrossRefGoogle Scholar
  54. Kami D, Kikuchi T, Sugiyama K, Suzuki T (2009) Cryopreservation of shoot apices of cranberry and highbush blueberry in-vitro cultures. Cryobiology 59:411–412.  https://doi.org/10.1016/j.cryobiol.2009.10.162 CrossRefGoogle Scholar
  55. Kaviani B, Negandar N (2017) Propagation, micropropagation and cryopreservation of Buxus hyrcana Pojark., an endangered ornamental shrub. S Afr J Bot 111:326–335.  https://doi.org/10.1016/j.sajb.2017.04.004 CrossRefGoogle Scholar
  56. Kaya E, Souza FVD (2017) Comparison of two PVS2-based procedures for cryopreservation of commercial sugarcane (Saccharum spp.) germplasm and confirmation of genetic stability after cryopreservation using ISSR markers. In Vitro Cell Dev Biol Plant 53:410–417.  https://doi.org/10.1007/s11627-017-9837-2 CrossRefGoogle Scholar
  57. Kaya E, Alves A, Rodrigues L, Jenderek M, Hernandez-Ellis M, Ozudogru A, Ellis D (2013) Cryopreservation of eucalyptus genetic resources. CryoLetters 34:608–618PubMedPubMedCentralGoogle Scholar
  58. Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic, San DiegoGoogle Scholar
  59. Kulus D, Abratowska A (2017) (Cryo)conservation of Ajania pacifica (Nakai) Bremer et Humphries shoot tips via encapsulation-dehydration technique. CryoLetters 38:387–398Google Scholar
  60. Kulus D, Abratowska A, Mikula A (2018a) Morphogenetic response of shoot tips to cryopreservation by encapsulation-dehydration in a solid mutant and periclinal chimeras of Chrysanthemum × grandiflorum/Ramat./Kitam. Acta Physiol Plant 40:13.  https://doi.org/10.1007/s11738-017-2593-4
  61. Kulus D, Serocka M, Mikuła A (2018b) Effect of various preculture and osmotic dehydration conditions on cryopreservation efficiency and morphogenetic response of Chrysanthemum shoot tips. Acta Sci Pol Hortorum Cult 17:17Google Scholar
  62. Kumar S, Sharma S (2005) Somatic embryogenesis and cryopreservation of walnut (Juglans regia L.) and pecan (Carya illinoensis Koch). In: Chauhan JS, Sharma SD, Sharma RC, Sharma RC, Rehalia AS, Kumar K (eds) Proceedings of the VIIth international symposium on temperate zone fruits in the tropics and subtropics, Pt 2. Acta Horticulturae, vol 696. International Society Horticultural Science, Leuven 1, pp 143–147. doi: https://doi.org/10.17660/ActaHortic.2005.696.24
  63. Kushnarenko SV, Romadanova NV, Zhumabaeva BA, Reed BM (2018) In vitro Storage and cryopreservation of clonally propagated plant germplasm in Kazakhstan. Cryobiology 85:186–187CrossRefGoogle Scholar
  64. le Roux ML, Botha AM, van der Vyver C (2016) Somatic embryogenesis and cryopreservation of South African bread wheat (Triticum aestivum L.) genotypes. S Afr J Bot 106:78–88.  https://doi.org/10.1016/j.sajb.2016.05.018 CrossRefGoogle Scholar
  65. Li BQ, Feng CH, Wang MR, Hu LY, Volk G, Wang QC (2015) Recovery patterns, histological observations and genetic integrity in Malus shoot tips cryopreserved using droplet-vitrification and encapsulation-dehydration procedures. J Biotechnol 214:182–191.  https://doi.org/10.1016/j.jbiotec.2015.09.030 PubMedCrossRefPubMedCentralGoogle Scholar
  66. Li J-W, Chen H-Y, Li X-Y, Zhang Z, Blystad D-R, Wang Q-C (2017) Cryopreservation and evaluations of vegetative growth, microtuber production and genetic stability in regenerants of purple-fleshed potato. Plant Cell Tissue Organ Cult 128:641–653CrossRefGoogle Scholar
  67. Lia JW, Hosokawa M, Nabeshima T, Motoki K, Yamada H, Wang QC (2019) Cryopreservation of viroid-infected Chrysanthemum shoot tips. Sci Hortic 244:1–9.  https://doi.org/10.1016/j.scienta.2018.09.004 CrossRefGoogle Scholar
  68. Lineros Y, Balocchi C, Munoz X, Sanchez M, Rios D (2018) Cryopreservation of Pinus radiata embryogenic tissue: effects of cryoprotective pretreatments on maturation ability. Plant Cell Tissue Organ Cult 135:357–366.  https://doi.org/10.1007/s11240-018-1469-7 CrossRefGoogle Scholar
  69. Lynch PT et al (2011) Effects of osmotic pretreatments on oxidative stress, antioxidant profiles and cryopreservation of olive somatic embryos. Plant Sci 181:47–56.  https://doi.org/10.1016/j.plantsci.2011.03.009 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Lynch PT, Souch GR, Zamecnik J, Harding K (2016) Optimization of water content for the cryopreservation of Allium sativum in vitro cultures by encapsulation-dehydration. CryoLetters 37:308–317Google Scholar
  71. Makowski D, Tomiczak K, Rybczynski JJ, Mikula A (2016) Integration of tissue culture and cryopreservation methods for propagation and conservation of the fern Osmunda regalis L. Acta Physiol Plant 38:12.  https://doi.org/10.1007/s11738-015-2037-y
  72. Martín C, Kremer C, González I, González-Benito ME (2015) Influence of the cryopreservation technique, recovery medium and genotype on genetic stability of mint cryopreserved shoot tips. Plant Cell Tissue Organ Cult 122:185–195CrossRefGoogle Scholar
  73. Mathew L, McLachlan A, Jibran R, Burritt DJ, Pathirana R (2018) Cold, antioxidant and osmotic pre-treatments maintain the structural integrity of meristematic cells and improve plant regeneration in cryopreserved kiwifruit shoot tips. Protoplasma 255:1065–1077.  https://doi.org/10.1007/s00709-018-1215-3 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Matsumoto T (2017) Cryopreservation of plant genetic resources: conventional and new methods. Rev Agric Sci 5:13–20CrossRefGoogle Scholar
  75. Matsumoto T, Sakai A, Takahashi C, Yamada K (1995) Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia-japonica) by encapsulation-vitrification method. CryoLetters 16:189–196Google Scholar
  76. Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Phys Cell Phys 247:C125–C142CrossRefGoogle Scholar
  77. Medeiros CD, Cavalcante J, Alsina O (2006) Estudo da desidratação osmótica da fruta da palma (figo da Índia). Revista Brasileira de Produtos Agroindustriais 8:153–162CrossRefGoogle Scholar
  78. Merhy TSM, Vianna MG, Garcia RO, Pacheco G, Mansur E (2014) Cryopreservation of Passiflora pohlii nodal segments and assessment of genetic stability of regenerated plants. CryoLetters 35:204–215Google Scholar
  79. Ming-Hua Y, Sen-Rong H (2010) A simple cryopreservation protocol of Dioscorea bulbifera L. embryogenic calli by encapsulation-vitrification. Plant Cell Tissue Organ Cult 101:349–358CrossRefGoogle Scholar
  80. Moges AD, Shibli RA, Karam NS (2004) Cryopreservation of African violet (Saintpaulia ionantha Wendl.) shoot tips. In Vitro Cell Dev Biol Plant 40:389–395.  https://doi.org/10.1079/ivp2004536 CrossRefGoogle Scholar
  81. Mubbarakh SA, Izhar NA, Rajasegar A, Subramaniam S (2014) Establishment of encapsulation-dehydration technique for in vitro fragmented explants of Rosa hybrida L. cv. Helmut Schmidt. Emir J Food Agric 26:565–576.  https://doi.org/10.9755/ejfa.v26i6.18024 CrossRefGoogle Scholar
  82. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497CrossRefGoogle Scholar
  83. Neal Stewart JRC (2016) Plant biotechnology and genetics: principles, techniques, and applications. WileyGoogle Scholar
  84. Niino T, Sakai A (1992) Cryopreservation of alginate-coated invitro-grown shoot tips of apple, pear and mulberry. Plant Sci 87:199–206.  https://doi.org/10.1016/0168-9452(92)90151-b CrossRefGoogle Scholar
  85. Ozudogru EA, Kaya E (2012) Cryopreservation of Thymus cariensis and T. vulgaris shoot tips: comparison of three vitrification-based methods. CryoLetters 33:363–375Google Scholar
  86. Ozudogru EA, Kirdok E, Kaya E, Capuana M, Benelli C, Engelmann F (2011) Cryopreservation of redwood (Sequoia sempervirens (D. Don.) Endl.) in vitro buds using vitrification-based techniques. CryoLetters 32:99–110Google Scholar
  87. Pammenter NW, Berjak P, Wesley-Smith J, Vander Willigen C (2002) Experimental aspects of drying and recovery. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CABI Publishing, Wallingford, pp 93–110CrossRefGoogle Scholar
  88. Panis B, Totte N, VanNimmen K, Withers LA, Swennen R (1996) Cryopreservation of banana (Musa spp) meristem cultures after preculture on sucrose. Plant Sci 121:95–106.  https://doi.org/10.1016/s0168-9452(96)04507-4 CrossRefGoogle Scholar
  89. Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168:45–55.  https://doi.org/10.1016/j.plantsci.2004.07.022 CrossRefGoogle Scholar
  90. Paques M, Poissonnier M, Dumas E (1996) Monod V cryopreservation of dormant and non dormant broad-leaved trees. In: III International symposium on in vitro culture and horticultural breeding, vol 447, pp 491–498Google Scholar
  91. Pathirana R, McLachlan A, Hedderley D, Panis B, Carimi F (2016) Pre-treatment with salicylic acid improves plant regeneration after cryopreservation of grapevine (Vitis spp.) by droplet vitrification. Acta Physiol Plant 38:11.  https://doi.org/10.1007/s11738-015-2026-1
  92. Paul H, Daigny G, Sangwan-Norreel BS (2000) Cryopreservation of apple (Malus × domestica Borkh.) shoot tips following encapsulation-dehydration or encapsulation-vitrification. Plant Cell Rep 19:768–774.  https://doi.org/10.1007/s002990000195 PubMedCrossRefPubMedCentralGoogle Scholar
  93. Paulet F, Engelmann F, Glaszmann J-C (1993) Cryopreservation of apices of in vitro plantlets of sugarcane (Saccharum sp. hybrids) using encapsulation/dehydration. Plant Cell Rep 12:525–529Google Scholar
  94. Pence VC et al (2017) Survival and genetic stability of shoot tips of Hedeoma todsenii RSIrving after long-term cryostorage. In Vitro Cell Dev Biol Plant 53:328–338.  https://doi.org/10.1007/s11627-017-9854-1 CrossRefGoogle Scholar
  95. Pettinelli JD, Soares BD, Cantelmo L, Garcia RD, Mansur E, Engelmann F, Gagliardi RF (2017) Cryopreservation of somatic embryos from Petiveria alliacea L. by different techniques based on vitrification. In Vitro Cell Dev Biol Plant 53:339–345.  https://doi.org/10.1007/s11627-017-9820-y CrossRefGoogle Scholar
  96. Phunchindawan M, Hirata K, Sakai A, Miyamoto K (1997) Cryopreservation of encapsulated shoot primordia induced in horseradish (Armoracia rusticana) hairy root cultures. Plant Cell Rep 16:469–473.  https://doi.org/10.1007/s002990050262 PubMedCrossRefPubMedCentralGoogle Scholar
  97. Pieruzzi FP, Dias LLC, Balbuena TS, Floh EIS, Santa-Catarina C, ALWd S (2011) Polyamines, IAA and ABA during germination in two recalcitrant seeds: Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm). Ann Bot 108:337–345.  https://doi.org/10.1093/aob/mcr133 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Popova E, Bukhov N, Popov A, Kim H-H (2010) Cryopreservation of protocorm-like bodies of the hybrid orchid Bratonia (Miltonia flavescens × Brassia longissima). CryoLetters 31:426–437Google Scholar
  99. Popova E, Kim HH, Saxena PK, Engelmann F, Pritchard HW (2016) Frozen beauty: The cryobiotechnology of orchid diversity. Biotechnol Adv 34:380–403.  https://doi.org/10.1016/j.biotechadv.2016.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Prudente D, Paiva R (2017) Plant cryopreservation: biochemical aspects. J Cell Dev Biol 1(1):1CrossRefGoogle Scholar
  101. Prudente DD, Paiva R, Nery FC, Paiva PDD, Alves JD, Maximo WPF, Silva LC (2017) Compatible solutes improve regrowth, ameliorate enzymatic antioxidant systems, and reduce lipid peroxidation of cryopreserved Hancornia speciosa Gomes lateral buds. In Vitro Cell Dev Biol Plant 53:352–362.  https://doi.org/10.1007/s11627-017-9830-9 CrossRefGoogle Scholar
  102. Prudente DO, Paiva R, Souza LB, Paiva PDO (2018) Cryotherapy as a technique for virus elimination in ornamental species. Plant Cell Cult Micropropag 13:29–33Google Scholar
  103. Rabba'a MM, Shibli RA, Shatnawi MA (2012) Cryopreservation of Teucrium polium L. shoot-tips by vitrification and encapsulation-dehydration. Plant Cell Tissue Organ Cult 110:371–382.  https://doi.org/10.1007/s11240-012-0158-1 CrossRefGoogle Scholar
  104. Rafique T et al (2016) Cryopreservation of shoot-tips from different sugarcane varieties using D cryo-plate technique. Pak J Agric Sci 53:151–158.  https://doi.org/10.21162/pakjas/16.5018 CrossRefGoogle Scholar
  105. Rai MK, Asthana P, Singh SK, Jaiswal VS, Jaiswal U (2009) The encapsulation technology in fruit plants – a review. Biotechnol Adv 27:671–679.  https://doi.org/10.1016/j.biotechadv.2009.04.025 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Ramon M, Geuns J, Swennen R, Panis B (2002) Polyamines and fatty acids in sucrose precultured banana meristems and correlation with survival rate after cryopreservation. Cryo Letters 23(6):345–352PubMedPubMedCentralGoogle Scholar
  107. Reed B (2018) Culture conditions are as important as the protocol in successful cryopreservation. Cryobiology 80:170.  https://doi.org/10.1016/j.cryobiol.2017.10.065 CrossRefGoogle Scholar
  108. Ren L, Zhang D, Shen XH, Reed BM (2014) Antioxidants and anti-stress compounds improve the survival of cryopreserved Arabidopsis seedlings. In: Reed BM (ed) Ii international symposium on plant cryopreservation, vol 1039. Acta Horticulturae, vol 1. International Society of Horticultural Science, Leuven, pp 57–61Google Scholar
  109. Rohini MR, Malik SK, Choudhary R, Kaur S, Uchoi A, Chaudhury R (2016) Storage behavior and cryopreservation studies in Indian rough lemon (Citrus jambhiri): a promising rootstock for long-term conservation. Turk J Agric For 40:865–873.  https://doi.org/10.3906/tar-1511-94 CrossRefGoogle Scholar
  110. Ryynahen L, Haggman H (1999) Substitution of ammonium ions during cold hardening and post-thaw cultivation enhances recovery of cryopreserved shoot tips of Betula pendula. J Plant Physiol 154:735–742.  https://doi.org/10.1016/s0176-1617(99)80252-1 CrossRefGoogle Scholar
  111. Sakai A, Engelmann F (2007) Vitrification, encapsulation-vitrification and droplet-vitrification: a review. CryoLetters 28:151–172PubMedPubMedCentralGoogle Scholar
  112. Sakai A, Hirai D, Niino T (2008) Development of PVS-Based vitrification and encapsulation-vitrification protocols. In: Plant cryopreservation: a practical guide. Corvalis, Springer, pp 33–58CrossRefGoogle Scholar
  113. Salama A, Popova E, Jones MP, Shukla MR, Fisk NS, Saxena PK (2018) Cryopreservation of the critically endangered golden paintbrush (Castilleja levisecta Greenm.): from nature to cryobank to nature. In Vitro Cell Dev Biol Plant 54:69–78.  https://doi.org/10.1007/s11627-018-9888-z CrossRefGoogle Scholar
  114. Sharaf SA, Shibli RA, Kasrawi MA, Baghdadi SH (2012) Cryopreservation of wild Shih (Artemisia herba-alba Asso.) shoot-tips by encapsulation-dehydration and encapsulation-vitrification. Plant Cell Tissue Organ Cult 108:437–444CrossRefGoogle Scholar
  115. Shibli R, Al-Juboory K (2000) Cryopreservation of ‘Nabali’ olive (Olea europea l.) somatic embryos by encapsulation-dehydration and encapsulation-vitrification. Cryo Letters 21:357–366Google Scholar
  116. Shin DJ, Lee HE, Bae CH, Park SU, Kang HN, Kim HH (2014) Development of an encapsulation-vitrification protocol for Rubia akane (Nakai) hairy roots: a comparison with non-encapsulation. CryoLetters 35:377–384Google Scholar
  117. Silva LC, Paiva R, Swennen R, Andrè E, Panis B (2013) Shoot-tip cryopreservation by droplet vitrification of Byrsonima intermedia A. Juss.: a woody tropical and medicinal plant species from Brazilian Cerrado. CryoLetters 34:338–348Google Scholar
  118. Sipen P, Anthony P, Davey MR (2011) Cryopreservation of scalps of Malaysian bananas using a pregrowth method. CryoLetters 32:197–205PubMedPubMedCentralGoogle Scholar
  119. Souza FVD et al (2017) Cryopreservation of Hamilin sweet orange (Citrus sinensis (L.) Osbeck) embryogenic calli using a modified aluminum cryo-plate technique. Sci Hortic 224:302–305.  https://doi.org/10.1016/j.scienta.2017.06.042 CrossRefGoogle Scholar
  120. Stanwood PC (1985) Cryopreservation of seed germplasm for genetic conservation. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC Press, Boca Raton, FL, pp 199–226Google Scholar
  121. Subaih WS, Shatnawi MA, Shibli RA (2007) Cryopreservation of date palm (Phoenix dactylifera) embryogenic callus by encapsulation-dehydration, vitrification and encapsulation-vitrification. Jordan J Agric Sci 3:156–171Google Scholar
  122. Suranthran P, Gantait S, Sinniah UR, Subramaniam S, Alwee S, Roowi SH (2012) Effect of loading and vitrification solutions on survival of cryopreserved oil palm polyembryoids. Plant Growth Regul 66:101–109.  https://doi.org/10.1007/s10725-011-9633-7 CrossRefGoogle Scholar
  123. Suzuki M, Tandon P, Ishikawa M, Toyomasu T (2008) Development of a new vitrification solution, VSL, and its application to the cryopreservation of gentian axillary buds. Plant Biotechnol Rep 2:123–131.  https://doi.org/10.1007/s11816-008-0056-5 CrossRefGoogle Scholar
  124. Tanaka D, Niino T, Isuzugawa K, Hikage T, Uemura M (2004) Cryopreservation of shoot apices of in-vitro grown gentian plants: comparison of vitrification and encapsulation-vitrification protocols. CryoLetters 25:167–176Google Scholar
  125. Thobunluepop P, Pawelzik E, Vearasilp S (2009) Possibility of sweet corn synthetic seed production. Pak J Biol Sci 12:1085CrossRefGoogle Scholar
  126. Thomas TD (2008) The role of activated charcoal in plant tissue culture. Biotechnol Adv 26:618–631PubMedCrossRefPubMedCentralGoogle Scholar
  127. Tomaz I, Šeparović M, Štambuk P, Preiner D, Maletić E, Karoglan Kontić J (2018) Effect of freezing and different thawing methods on the content of polyphenolic compounds of red grape skins. J Food Process Preserv 42:e13550CrossRefGoogle Scholar
  128. Uchendu EE, Keller ERJ (2016) Melatonin-loaded alginate beads improve cryopreservation of yam (Dioscorea alata and D. cayenensis). CryoLetters 37:77–87Google Scholar
  129. Uchendu E, Reed B (2008) Desiccation tolerance and cryopreservation of in vitro grown blueberry and cranberry shoot tips. In: IX International vaccinium symposium, vol 810, pp 567–574Google Scholar
  130. Uchendu EE, Muminova M, Gupta S, Reed BM (2010) Antioxidant and anti-stress compounds improve regrowth of cryopreserved Rubus shoot tips. In Vitro Cell Dev Biol Plant 46:386–393.  https://doi.org/10.1007/s11627-010-9292-9 CrossRefGoogle Scholar
  131. Uchendu E, Shukla M, Reed B, Saxena P (2013) An efficient method for cryopreservation of St John’s wort and tobacco: role of melatonin. In: II International symposium on plant cryopreservation, vol 1039, pp 233–241Google Scholar
  132. Uchendu EE, Shukla MR, Reed BM, Saxena PK (2014) An efficient method for cryopreservation of St John’s wort and tobacco: role of melatonin. In: Reed BM (ed) Ii international symposium on plant cryopreservation, vol 1039. Acta Horticulturae. International Society of Horticultural Science, Leuven 1, pp 233–241Google Scholar
  133. Van Eck J, Keen P (2009) Continued expression of plant-made vaccines following long-term cryopreservation of antigen-expressing tobacco cell cultures. In Vitro Cell Dev Biol Plant 45:750–757.  https://doi.org/10.1007/s11627-009-9231-9 CrossRefGoogle Scholar
  134. Volk GM, Caspersen AM (2007) Plasmolysis and recovery of different cell types in cryoprotected shoot tips of Mentha × piperita. Protoplasma 231:215–226.  https://doi.org/10.1007/s00709-007-0251-1 PubMedCrossRefPubMedCentralGoogle Scholar
  135. Volk GM, Shepherd AN, Bonnart R (2018) Successful cryopreservation of Vitis shoot tips: novel pre-treatment combinations applied to nine species. CryoLetters 39:322–330Google Scholar
  136. Wang QC, Valkonen JPT (2009) Cryotherapy of shoot tips: novel pathogen eradication method. Trends Plant Sci 14:119–122.  https://doi.org/10.1016/j.tplants.2008.11.010 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Wang Q, Tanne E, Arav A, Gafny R (2000) Cryopreservation of in vitro-grown shoot tips of grapevine by encapsulation-dehydration. Plant Cell Tissue Organ Cult 63:41–46CrossRefGoogle Scholar
  138. Wang Q, Mawassi M, Li P, Gafny R, Sela I, Tanne E (2003) Elimination of grapevine virus A (GVA) by cryopreservation of in vitro-grown shoot tips of Vitis vinifera L. Plant Sci 165:321–327.  https://doi.org/10.1016/S0168-9452(03)00091-8 CrossRefGoogle Scholar
  139. Wang Q, Laamanen J, Uosukainen M, Valkonen JP (2005) Cryopreservation of in vitro-grown shoot tips of raspberry (Rubus idaeus L.) by encapsulation–vitrification and encapsulation–dehydration. Plant Cell Rep 24:280–288PubMedCrossRefPubMedCentralGoogle Scholar
  140. Wang MR, Chen L, da Silva JAT, Volk GM, Wang QC (2018a) Cryobiotechnology of apple (Malus spp.): development, progress and future prospects. Plant Cell Rep 37:689–709.  https://doi.org/10.1007/s00299-018-2249-x PubMedCrossRefPubMedCentralGoogle Scholar
  141. Wang MR et al (2018b) Cryopreservation of virus: a novel biotechnology for long-term preservation of virus in shoot tips. Plant Methods 14:10.  https://doi.org/10.1186/s13007-018-0312-9 CrossRefGoogle Scholar
  142. Wyse SV, Dickie JB, Willis KJ (2018) Seed banking not an option for many threatened plants. Nat Plants 4:848–850.  https://doi.org/10.1038/s41477-018-0298-3 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Zalewska M, Kulus D (2013) Cryopreservation of in vitro-grown shoot tips of Chrysanthemum by encapsulation-dehydration. Folia Hortic 25:133.  https://doi.org/10.2478/fhort-2013-0015 CrossRefGoogle Scholar
  144. Zarghami R, Pirseyedi M, Hasrak S, Sardrood BP (2008) Evaluation of genetic stability in cryopreserved Solanum tuberosum. Afr J Biotechnol 7:2798–2802Google Scholar
  145. Zhang JM et al (2014) Optimization of droplet-vitrification protocol for carnation genotypes and ultrastructural studies on shoot tips during cryopreservation. Acta Physiol Plant 36:3189–3198.  https://doi.org/10.1007/s11738-014-1685-7 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Débora de Oliveira Prudente
    • 1
  • Lucas Batista de Souza
    • 1
  • Renato Paiva
    • 1
  1. 1.Universidade Federal de LavrasLavrasBrazil

Personalised recommendations