Somatic Embryos Encapsulation for Synthetic Seed Production of Sugar Palm (Arenga pinnata Wurmb Merr.)

  • Nazatul Asikin Muda
  • Asmah AwalEmail author


This paper describes a protocol for producing synthetic seeds of sugar palm (Arenga pinnata Wurmb Merr.) using encapsulated somatic embryos (SEs) and secondary somatic embryos (SSEs) at different developmental stages. The study investigates in vitro germination response of the synthetic seeds influenced by different concentrations of encapsulation matrix and its viability at storage temperature of 4 °C and 25 °C. Encapsulation of SEs and SSEs in 3.0% sodium alginate, complexed in 100 mM calcium chloride sterile solution (CaCl2·2H2O) and inoculated on basal MS media under dark condition at 25 ± 2 °C, promoted an optimum 30 and 80% germination rate after 4 and 8 weeks, respectively. Germinated synthetic seeds transferred to MS + 1.0 mg/L BAP (6-Benzylaminopurine) + 1.0 g/L NAA (1-Naphtaleneacetic acid) promoted an optimum average number of shoot regeneration at 7.75 ± 1.32 after 12 weeks. Synthetic seeds being cold-stored at 4 °C displayed consistent declination rate of germination at 0–120 days of storage, while the synthetic seeds stored at normal culture condition of 25 °C promoted optimum germination (80%) during 0–45 days of storage. Optimum number of shoot regeneration at 11.00 ± 0.91 and 12.25 ± 1.32 with the average number of roots at 3.00 ± 0.41 was recorded from the non-refrigerated synthetic seeds cultured on MS + 1.0 mg/L BAP + 1.0 mg/L NAA after 8 weeks. Shoots of normal morphology were observed after 12 weeks of transfer on basal MS media.


CaCl2 2H2Sodium alginate Somatic embryos Sugar palm (Arenga pinnata Wurmb Merr.) Synthetic seeds 



The authors acknowledge Universiti Teknologi MARA (UiTM) Shah Alam for research funding of 600-RMI/DANA5/3/REI (1/2013) and MyBrain15 Scholarship, Ministry of Higher Education, Malaysia.


  1. Asikin D, Puspitaningtyas DM (2000) Study on in vitro and in vivo seed germination of Arenga pinnata (Wurmb) Merr. Seminar Hasil Penelitian dan Pengembangan Bioteknologi, Cibinong, Bogor (Indonesia). Puslitbang BioteknologiGoogle Scholar
  2. Awal A, Taha RM, Hasbullah NA (2008) Induction of somatic embryogenesis and plant regeneration in Begonia x hiemalis Fotsch. in vitro. J Biol Sci 8(5):920–924CrossRefGoogle Scholar
  3. Bapat VA, Mhatre M, Rao PS (1987) Propagation of Morus indica L. (Mulberry) by encapsulated shoot buds. Plant Cell Rep 6(5):393–395CrossRefGoogle Scholar
  4. Bekheet SA (2017) Encapsulation of date palm somatic embryos: synthetic seeds. In: Date palm biotechnology protocols, vol II. Humana, New York, NY, pp 71–78CrossRefGoogle Scholar
  5. Bhatia S, Bera T (2015) Somatic embryogenesis and organogenesis. In: Bhatia S, Sharma K, Dahiya R, Bera T (eds) Modern applications of plant biotechnology in pharmaceutical sciences. Elsevier, London Wall, pp 209–228CrossRefGoogle Scholar
  6. Diab MI, El-Fadl REA (2016) In vitro propagation of date palm (Phoenix dactylifera L.) embryos using synthetic seeds. IOSR J Biotechnol Biochem (IOSR-JBB) 2(6):62–68Google Scholar
  7. Gray DJ, Purohit A, Triglano RN (1991) Somatic embryogenesis and development of synthetic seed technology. Crit Rev Plant Sci 10:33–61CrossRefGoogle Scholar
  8. Inpuay K, Te-chato S (2012) Primary and secondary somatic embryos as tool for the propagation and artificial seed production of oil palm. J Agricult Technol 8(2):597–609Google Scholar
  9. Kamada FI (1985) Synthetic seeds. In: Tanaka R (ed) Practical technology on the mass production of clonal plants. CMC, TokyoGoogle Scholar
  10. Kumar MA, Vakeswaran V, Krishnasamy V (2005) Enhancement of synthetic seed conversion to seedlings in hybrid rice. Plant Cell Tissue Organ Cult 81(1):97–100CrossRefGoogle Scholar
  11. Magray M, Wani KP, Chatto MA, Ummyiah HM (2017) Synthetic seed technology. Int J Curr Microbiol App Sci 6(11):662–674CrossRefGoogle Scholar
  12. Maqsood M, Mujib A, Siddiqui ZH (2012) Synthetic seed development and conversion to plantlet in Catharanthus roseus (L.). G Don. Biotechnology 11(1):37–43CrossRefGoogle Scholar
  13. Mariani TS, Sasmitamiharja D, Mienanti D, Latif S, Ginting G, Miyake H (2014) Somatic embryogenesis of oil palm (Elaeis guineensis Jacq.) for synthetic seed production. Asian J Appl Sci 2(3):358–367Google Scholar
  14. Mogea JP (2003) Four new species of Arenga (Palmae) from Indonesia. Reinwardtia 12(2):181–189Google Scholar
  15. Muda NA, Awal A (2017) Somatic embryogenesis in sugar palm (Arenga pinnata Wurmb Merr.) from zygotic embryo explants. Pertanika J Sci Technol 25(S7):133–144Google Scholar
  16. Murashige T (1977) Plant cell and organ cultures as horticultural practices. In: Proceedings of the symposium on tissue culture for horticultural purposes, Ghent, BelgiumGoogle Scholar
  17. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  18. Orwa C, Mutua A, Kindt R, Jamnadass R, Simons A (2009) Agroforestry database: a tree species reference and selection guide version 4.0. World Agroforestry Centre ICRAF, Nairobi, KenyaGoogle Scholar
  19. Purohit SD (2013) Introduction to plant cell, tissue and organ culture. PHI Learning Private Limited, Delhi, p 232Google Scholar
  20. Redenbaugh K, Viss P, Slade D, Fujii JA (1987) Scale-up: artificial seeds. In: Alan R (ed) Plant tissue and cell culture. Liss Inc, New York, pp 473–493Google Scholar
  21. Rihan H, Kareem F, El-Mahrouk M, Fuller M (2017) Artificial seeds (principle, aspects and applications). Agronomy 7(4):71CrossRefGoogle Scholar
  22. Roy B, Tulsiram SD (2013) Synthetic seed of rice: an emerging avenue of applied biotechnology. Rice Genomics Genet 4(1):14–27Google Scholar
  23. Saiprasad GVS (2001) Artificial seeds and their applications. Resonance 6(5):39–47CrossRefGoogle Scholar
  24. Soeseno S (2000) Bertanam Aren. Penebar Swadaya, Jakarta (ID)Google Scholar
  25. Swamy MK, Balasubramanya S, Anuradha M (2009) Germplasm conservation of patchouli (Pogostemon cablin Benth.) by encapsulation of in vitro derived nodal segments. Int J Biodiversity Conserv 1(8):224–230Google Scholar
  26. Tarmizi AH, Zaiton R (2013) Oil Palm synthetic seeds. Malaysian Palm oil boards, Ministries of Plantation Industries and Commodities, Malaysia, P.O. Box 10620, 50720, Kuala Lumpur, MalaysiaGoogle Scholar
  27. Thobunluepop P, Pawelzik E, Vearasilp S (2005) Plant regeneration via organogenesis and embryogenesis in sweet corn. In: Proceedings of the conference on international agricultural research for development, Stuttgart-HohenheimGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Plantation and AgrotechnologyUniversiti Teknologi MARAShah AlamMalaysia
  2. 2.Agricutural Biotechnology Research Group, Faculty of Plantation and AgrotechnologyUniversiti Teknologi MARAShah AlamMalaysia

Personalised recommendations