Synthetic Seed Production of Flower Bulbs

  • Metin Kocak
  • Basar Sevindik
  • Tolga Izgu
  • Mehmet Tutuncu
  • Yesim Yalcın Mendi


Flower bulbs are perennial or annual plants with underground structures such as bulb, corn, tuber, and rhizomes. These plants have economic value especially in ornamental plant sector as cut flower, potted flower, and outdoor plants. Most of these plants have garish flower, and many of them are monocotyledon. Cyclamen, Tulipa, Lilium, Narcissus, Gladiolus, Hyacinthus, Crocus, Iris, Allium, Alstroemeria, Anemone, Orchis, Rhododendron, Freesia, Hippeastrum, Muscari, Ornithogalum, Ranunculus, and Zantedeschia are the most important geophytes that are commercially used in the world. These plants can be propagated using conventional and tissue culture techniques. Synthetic seed production is one of these techniques. Synthetic seed, namely, artificial seed, is described as artificially encapsulated plant tissues and somatic embryos with alginate hydrogel. Synthetic seed technology has significant effect on the conservation of the plant tissues and sustainability of the plants. Recently, conservation of the plant species studies significantly increased, and artificial seed method was used as the most common process to conserve important species. In this chapter, oldest and newest synthetic seed production researches were discussed and presented chronologically.


Synthetic seed Encapsulation Flower bulbs Propagule Protocorm-like bodies 


  1. Ahmed MR, Anis M, Al-Etta HA (2014) Encapsulation technology for short-term storage and germplasm exchange of Vitex trifolia L. Rend Fis Acc LinceiGoogle Scholar
  2. AIPH/Union Fleurs (2010) International Statistics Flowers and Plants 2010. AIPH/UNION FLEURS International Flower Trade Association, vol 58, NetherlandGoogle Scholar
  3. Ara H, Jaiswal U, Jaiswal VS (2000) Synthetic seed: prospects and limitations. Curr Sci 78(12):1438–1444Google Scholar
  4. Baskaran P, Kumari A, Staden JV (2015) Embryogenesis and synthetic seed production in Mondia whitei. Plant Cell Tissue Organ Cult 121:205–214CrossRefGoogle Scholar
  5. Baskaran P, Kumari A, Staden JV (2017) In vitro propagation via organogenesis and synthetic seeds of Urginea altissima (L.f.) Baker: a threatened medicinal plant. 3 Biotech 8(1):18PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bektaş E, Sökmen A (2016) In vitro seed germination, plantlet growth, tuberization, and synthetic seed production of Serapias vomeracea (Burm.f.) Briq. Turk J Bot 40:584–594CrossRefGoogle Scholar
  7. Bhattacharyya P, Kumar V, Staden JV (2018) In vitro encapsulation based short term storage and assessment of genetic homogeneity in regenerated Ansellia africana (Leopard orchid) using gene targeted molecular markers. Plant Cell Tissue and Organ Cult (PCTOC) 133:299–310CrossRefGoogle Scholar
  8. Cangahuala-Inocente GC, Dal Vesco LL, Steinmacher D, Torrees AC, Guerra MP (2007) Improvements in somatic embryogenesis protocol in Feijoa (Acca sellowiana (Berg) Biuret). Induction, conversion and synthetic seeds. Sci Hortic 111:228–234CrossRefGoogle Scholar
  9. Cartes P, Castellano H, Ríos D, Sáez K, Spierccolli S, Sánchez M (2009) Encapsulated somatic embryos and zygotic embryos for obtaining artificial seeds of rauli-beech (Nothofagus alpina (Poepp. & Endl.) oerst.). Chil J Agric Res 69:112–118CrossRefGoogle Scholar
  10. Çiğ A, Başdoğan G (2015) In vitro propagation techniques for some geophyte ornamental plants with high economic value. Int J Second Metab 2(1):27–49Google Scholar
  11. Çölgeçen H, Toker MC (2006) Sentetik tohum. Anadolu University J Sci Technol Cilt 7(2):323–336Google Scholar
  12. Da Silva JAT (2012) Production of synseed for hybrid Cymbidium using protocorm-like bodies. J Fruit Ornamental Plant Res 20(2):135–146CrossRefGoogle Scholar
  13. Dafni A, Cohen D, Noy-Mier I (1981) Life-cycle variation in geophytes. Ann Mo Bot Gard 68(4):652–660CrossRefGoogle Scholar
  14. Datta KB, Kanjilal B, De Sarker D (1999) Artificial seed technology: development of a protocol in Geodorum densiflorum (Lam) Schltr.–an endangered orchid. Curr Sci 76(8):1142–1145Google Scholar
  15. Eeckhaut T, Van der Veken J, Dhooghe E, Leus L, Van K, Laere J, Huylenbroeck V (2018) Ploidy breeding in ornamentals. In: Van Huylenbroeck J (ed) Ornamental crops. Springer, Cham, pp 145–173CrossRefGoogle Scholar
  16. Gantait S, Sinniah UR (2013) Storability, post-storage conversion and genetic stability assessment of alginate-encapsulated shoot tips of monopodial orchid hybrid Aranda Wan Chark Kuan ‘Blue’ x Vanda coerulea Grifft. ex. Lindl. Plant Biotechnol Rep 7:257–266CrossRefGoogle Scholar
  17. Gantait S, Bustam S, Sinniah UR (2012) Alginate-encapsulation, short-term storage and plant regeneration from protocorm-like bodies of Aranda Wan Chark Kuan ‘Blue’ x Vanda coerulea Grifft. ex. Lindl. (Orchidaceae). Plant Growth Regul 68(2):303–311CrossRefGoogle Scholar
  18. Gantait S, Kundu S, Ali N, Sahu NC (2015) Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix. Acta Physiol Plant 37:98CrossRefGoogle Scholar
  19. Gantait S, Vijayan J, Majee A (2017) Artificial seed production of Tylophora indica for interim storing and swapping of germplasm. Horticult Plant J 3(1):41–46CrossRefGoogle Scholar
  20. Grzegorczyk I, Wysokıńska H (2011) A protocol for synthetic seeds from Salvia officinalis L. shoot tips. Acta Biol Cracov Ser Bot 53(1):80–85Google Scholar
  21. Gupta A (2016) Regeneration of Renanthera imschootiana Rolfe using synthetic seeds. Int Adv Res J Sci Eng Technol 3:6CrossRefGoogle Scholar
  22. Haque SM, Ghosh B (2014) Somatic embryogenesis and synthetic seed production-a biotechnological approach for true-to-type propagation and in vitro conservation of an ornamental bulbaceous plant Drimiopsis kirkii Baker. Appl Biochem Biotechnol 172:4013–4024PubMedPubMedCentralCrossRefGoogle Scholar
  23. Haque SM, Ghosh B (2016) High-frequency somatic embryogenesis and artificial seeds for mass production of true-to-type plants in Ledebouria revoluta: an important cardioprotective plant. Plant Cell Tissue Organ Cult 127:71–83CrossRefGoogle Scholar
  24. Haque SM, Ghosh B (2017) Regeneration of cytologically stable plants through dedifferentiation, redifferentiation, and artificial seeds in Spathoglottis plicata Blume (Orchidaceae). Horticult Plant J 3(5):199–208CrossRefGoogle Scholar
  25. Jitsopakul N, Thammasiri K, Ishikawa K (2008) Cryopreservation of Vanda coerulea protocorms by encapsulation-dehydration. CryoLetters 29(3):253–260PubMedPubMedCentralGoogle Scholar
  26. Kamenetsky R, Okubo H (2012) Ornamental geophytes: from basic science to sustainable production. CRC, Boca RatonCrossRefGoogle Scholar
  27. Karagüzel Ö, Kaya AS, Aydınşakir K (2007). September 2018
  28. Kaviani B (2010) Cryopreservation by encapsulation dehydration for long-term storage of some important germplasm: seed of lily [Lilium ledebourii (Baker) Bioss.], embryonic axe of Persian lilac (Melia azedarach L.), and tea (Camellia sinensis L.). Plant Omics J 3:177–182Google Scholar
  29. Kazaz S (2016) Dünya süs bitkileri sektöründe ürün deseni, sosyo ekonomik ve teknoloji alanında yaşanan gelişmeler ile Türkiye’nin gelecek vizyonu. VI. Süs Bitkileri Kongresi 19–22 Nisan, Turkey, AntalyaGoogle Scholar
  30. Khoddamzadeh AA, Sinniah UR, Lynch P, Kadir MA, Kadzimin SB, Mahmood M (2011) Cryopreservation of protocorm-like bodies (PLBs) of Phalaenopsis bellina (Rchb. f.) Christenson by encapsulation-dehydration. Plant Cell Tissue Organ Cult 107(3):471–481CrossRefGoogle Scholar
  31. Khor E, Ng W-F, Loh C-S (1998) Two-coat systems for encapsulation of Spathoglottis plicata (Orchidaceae) seeds and protocorms. Biotechnol Bioeng 59(5):635–639PubMedCrossRefGoogle Scholar
  32. Kulus D, Zalewska M (2014) Cryopreservation as a tool used in long-term storage of ornamental species–a review. Sci Hortic 168:88–107CrossRefGoogle Scholar
  33. Magray MM, Wani KP, Chatto MA, Ummyiah HM (2017) Synthetic seed technology. Int J Curr Microbiol App Sci 6(11):662–674CrossRefGoogle Scholar
  34. Mahendran G (2014) Encapsulation of protocorm of Cymbidium bicolor Lindl. for short-term storage and germplasm exchange. J Ornamental Plants 4(4):17–27Google Scholar
  35. Maqsood M, Mujib A, Khusrau M (2015) Preparation and low temperature short-term storage for synthetic seeds of Caladium bicolor. Not Sci Biol 7(1):90–95CrossRefGoogle Scholar
  36. Martin KP (2003) Clonal propagation, encapsulation and reintroduction of Ipsea malabarica (REICHB. f.) J. D. HOOK., an endangered orchid. In Vitro Cell Dev Biol Plant 39:322–326CrossRefGoogle Scholar
  37. Mishra J, Singh M, Palni LMS, Nandi SK (2011) Assessment of genetic fidelity of encapsulated microshoots of Picrorhiza kurrooa. Plant Cell Tissue Organ Cult 104:181–186CrossRefGoogle Scholar
  38. Mohanraj R, Ananthan R, Bai VN (2009) Production and storage of synthetic seed in Coelogyne breviscapa Lindl. Asian J Biyotechnol 1(3):124–128CrossRefGoogle Scholar
  39. Mohanty P, Das J (2013) Synthetic seed technology for short term conservation of medicinal orchid Dendrobium densiflorum Lindl. Ex Wall and assessment of genetic fidelity of regenerants. Plant Growth Regul 70:297–303CrossRefGoogle Scholar
  40. Mohanty P, Nongkling P, Das MC, Kumaria S, Tandon P (2013) Short-term storage of alginate-encapsulated protocorm-like bodies of Dendrobium nobile Lindl.: an endangered medicinal orchid from North-East India. 3 Biotech 3:235–239PubMedPubMedCentralCrossRefGoogle Scholar
  41. Murashige T (1977) Plant cell and organ cultures as horticultural practices. Acta Hortic 78:17–30CrossRefGoogle Scholar
  42. Nagananda GS, Satishchandra N, Rajath S (2011) Regeneration of encapsulated protocorm like bodies of medicinally important vulnerable Orchid Flickingeria nodosa (Dalz.) Seidenf. Int J Bot 7(4):310–313CrossRefGoogle Scholar
  43. Nagesh KS, Shanthamma C, Bhagyalakshmi N (2009) Role of polarity in de novo shoot bud initiation from stem disc explants of Curculigo orchioides Gaertn. and its encapsulation and storability. Acta Physiol Plant 31:699–704CrossRefGoogle Scholar
  44. Nongdam P (2016) Development of synthetic seed technology in plants and its applications: a review. Int J Curr Sci 19(4):E 86–E101Google Scholar
  45. Nybom H, Weising K, Rotter B (2014) DNA fingerprinting in botany: past, present, future. Invest Genet 5:1CrossRefGoogle Scholar
  46. Onishi N, Sakamato Y, Hirosawa T (1994) Synthetic seeds as an application of mass production of somatic embryos. Plant Cell Tissue Organ Cult 39:137–145Google Scholar
  47. Patel AV, Pusch I, Mix-Wagner G, Vorlop KD (2000) A novel encapsulation technique for the production of artificial seeds. Plant Cell Rep 19:868–874PubMedPubMedCentralCrossRefGoogle Scholar
  48. Pradhan S, Tiruwa B, Subedee BR, Pant B (2014) In vitro germination and propagation of a threatened medicinal orchid, Cymbidium aloifolium (L.) Sw. through artificial seed. Asian Pac J Trop Biomed 4(12):971–976CrossRefGoogle Scholar
  49. Pradhan S, Tiruwa BL, Subedee BR, Pant B (2016) Efficient plant regeneration of Cymbidium aloifolium (L.) Sw., a threatened orchid of Nepal through artificial seed technology. Am J Plant Sci 7:1964–1974CrossRefGoogle Scholar
  50. Rai MK, Asthana P, Singh SK, Jaiswal VS, Jaiswal U (2009) The encapsulation technology in fruit plants—a review. Biotechnol Adv 27:671–679PubMedPubMedCentralCrossRefGoogle Scholar
  51. Redenbaugh K (1990) Application of artificial seeds to tropical crops. HortScience 25(3):251–255CrossRefGoogle Scholar
  52. Redenbaugh K, Nichol J, Kossler ME, Paasch BD (1984) Encapsulation of somatic embryos for artificial seed production. In Vitro Cell Dev Biol Plt 20:256–257Google Scholar
  53. Redenbaugh K, Slade D, Viss PR, Fujii J (1987) Encapsulation of somatic embryos in synthetic seed coats. Hort Sci 22:803–809Google Scholar
  54. Rihan HZ, Kareem F, El-Mahrouk ME, Fuller MP (2017) Artificial seeds (principle, aspects and applications). Agronomy 7:71CrossRefGoogle Scholar
  55. Rizkalla AA, Badr-Elden AM, Ottai ME-S, Nasr MI, Esmail MNM (2012) Development of artificial seed technology and preservation in sugar beet. Sugar Tech 14:312–320CrossRefGoogle Scholar
  56. Saiprasad GVS, Polisetty R (2003) Propagation of three orchid genera using encapsulated protocorm-like bodies. In Vitro Cell Dev Biol Plant 39:42–48CrossRefGoogle Scholar
  57. Sarmah DK, Borthakur M, Boru PK (2010) Artificial seed production from encapsulated PLBs regenerated from leaf base of Vanda coerulea Grifft. ex. Lindl. – an endangered orchid. Curr Sci 98(5):686–690Google Scholar
  58. Seyring M, Hohe A (2005) Induction of desiccation-tolerance in somatic embryos of Cyclamen persicum Mill. J Horticult Sci Biotechnol 80(1):65–69CrossRefGoogle Scholar
  59. Sharma S, Shahzad A, Da Silva JAT (2013) Synseed technology—a complete synthesis. Biotechnol Adv 31:186–207PubMedPubMedCentralCrossRefGoogle Scholar
  60. Siew WL, Kwok MY, Ong YM, Liew HP, Yew BK (2014) Effective use of synthetic seed technology in the regeneration of Dendrobium white fairy orchid. J Ornamental Plants 4(1):1–7Google Scholar
  61. Siong PK, Mohajer S, Taha RM (2012) Production of artificial seeds derived from encapsulated in vitro micro shoots of cauli flower. Brassica oleracea var botrytis. Rom Biotechnol Lett 17(4):7549–7556Google Scholar
  62. Stella YR, Priya TA, Begam KMF, Manimekalai V (2015) In vitro seed germination, somatic embryogenesis and protocorm based micro propagation of a terrestrial ornamental orchid – Spathoglottis plicata blume. Eur J Biotechnol Biosci 3(4):20–23Google Scholar
  63. Taha MT, Mahmad N, Yaacob JS, Abdullah N, Mohajer S (2013) Synthetic seeds production and regeneration of Oxalis triangularis for mass propagation and conservation. Int J Environ Sci Dev 4(5):461–464CrossRefGoogle Scholar
  64. Vdovitchenko YM, Kuzovkina IN (2011) Artificial seeds as a way to produce ecologically clean herbal remedies and to preserve endangered plant species. Mosc Univ Biol Sci Bull 66(2):48–50CrossRefGoogle Scholar
  65. Weising K, Nybom H, Wolff K, Kahl G (2005) DNA fingerprinting in plants: principles, methods, and applications, 2nd edn. CRC, New YorkCrossRefGoogle Scholar
  66. Winkelmann T, Meyer L, Serek M (2004) Germination of encapsulated somatic embryos of Cyclamen persicum. HortScience 39(5):1093–1097CrossRefGoogle Scholar
  67. Yildiz M (2012) The prerequisite of the success in plant tissue culture: high frequency shoot regeneration. In: Leva A, Rinaldi LMR (eds) Recent advances in plant in vitro culture, 1st edn. InTech, Rijeka, pp 63–90Google Scholar
  68. Yücesan BB, Çiçek F, Gürel E (2014) Somatic embryogenesis and encapsulation of immature bulblets of an ornamental species, Grape hyacinths (Muscari armeniacum Leichtlin ex Baker). Turk J Agric For 38:716–722CrossRefGoogle Scholar
  69. Zaidi N, Khan NH, Zafar F, Zafar SI (2000) Bulbous and cormous monocotyledonous ornamental plants. In Vitro Sci Vision 6(1):58–73Google Scholar
  70. Ziv M, Lilien-Kipnis H (2000) Bud regeneration from inflorescence explants for rapid propagation of geophytes in vitro. Plant Cell Rep 19(9):845–850PubMedCrossRefGoogle Scholar
  71. Zulkarnain Z, Tapingkae T, Taji A (2015) Applications of in vitro techniques in plant breeding. In: Al-Khayri JM, Jain SM, Johnson (eds) Advances in plant breeding strategies: breeding, biotechnology and molecular tools, vol 1. Springer, Cham, pp 293–328CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Metin Kocak
    • 1
  • Basar Sevindik
    • 2
  • Tolga Izgu
    • 3
  • Mehmet Tutuncu
    • 4
  • Yesim Yalcın Mendi
    • 5
  1. 1.Faculty of Agriculture, Department of Agricultural BiotechnologyVan Yüzüncü Yil UniversityBardakçı, VanTurkey
  2. 2.Vocational High SchoolIzmir Demokrasi UniversityİzmirTurkey
  3. 3.Faculty of Agriculture, Department of HorticultureUniversity of EgeBornova, İzmirTurkey
  4. 4.Faculty of Agriculture, Department of HorticultureOndokuz Mayıs UniversityAtakum, SamsunTurkey
  5. 5.Faculty of Agriculture, Department of HorticultureUniversity of ÇukurovaSarıçam, AdanaTurkey

Personalised recommendations