Advertisement

Edge-Antimagic Total Labelings

  • Martin Bača
  • Mirka Miller
  • Joe Ryan
  • Andrea Semaničová-Feňovčíková
Chapter
Part of the Developments in Mathematics book series (DEVM, volume 60)

Abstract

This chapter focuses on edge-antimagic graphs under both vertex labelings and total labelings. Super edge-antimagic total labelings are given for standard graphs and (a,1) edge-antimagic total labelings are introduced and explored.

References

  1. 5.
    B.D. Acharya and S.M. Hegde, Strongly indexable graphs, Discrete Math. 93 (1991), 275–299.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 20.
    S. Arumugam and M. Nalliah, Super (a, d)-edge antimagic total labelings of friendship graphs, Austral. J. Combin. 53 (2012), 237–243.MathSciNetzbMATHGoogle Scholar
  3. 24.
    M. Bača and C. Barrientos, On super edge-antimagic total labelings of mK n, Discrete Math. 308 (2008), 5032–5037.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 25.
    M. Bača and C. Barrientos, Graceful and edge-antimagic labelings, Ars Combin. 96 (2010), 505–513.MathSciNetzbMATHGoogle Scholar
  5. 26.
    M. Bača, Y. Bashir, M.F. Nadeem and A. Shabbir, On super edge-antimagicness of circulant graphs, Graphs and Combin. 31 (2015), 2019–2028.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 27.
    M. Bača, E.T. Baskoro, R. Simanjuntak and K.A. Sugeng, Super edge-antimagic labelings of the generalized Petersen graph \(P\left ( n,({n-1})/{2}\right ) \), Utilitas Math. 70 (2006), 119–127.Google Scholar
  7. 29.
    M. Bača and L. Brankovic, Edge-antimagicness for a class of disconnected graphs, Ars Combin. 97A (2010), 145–152.MathSciNetzbMATHGoogle Scholar
  8. 30.
    M. Bača, Dafik, M. Miller and J. Ryan, Edge-antimagic total labeling of disjoint union of caterpillars, J. Combin. Math. Combin. Comput. 65 (2008), 61–70.Google Scholar
  9. 34.
    M. Bača, P. Kovář, A. Semaničová-Feňovčíková and M.K. Shafiq, On super (a,  1)-edge-antimagic total labelings of regular graphs, Discrete Math. 310 (2010), 1408–1412.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 36.
    M. Bača, Y. Lin, M. Miller and R. Simanjuntak, New constructions of magic and antimagic graph labelings, Utilitas Math. 60 (2001), 229–239.MathSciNetzbMATHGoogle Scholar
  11. 37.
    M. Bača, Y. Lin, M. Miller and M.Z. Youssef, Edge-antimagic graphs, Discrete Math. 307 (2007), 1232–1244.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 38.
    M. Bača, Y. Lin and F.A. Muntaner-Batle, Super edge-antimagic labelings of the path-like trees, Utilitas Math. 73 (2007), 117–128.MathSciNetzbMATHGoogle Scholar
  13. 40.
    M. Bača, Y. Lin and F.A. Muntaner-Batle, Edge-antimagic labelings of forests, Utilitas Math. 81 (2010), 31–40.MathSciNetzbMATHGoogle Scholar
  14. 41.
    M. Bača, Y. Lin and A. Semaničová-Feňovčiková, Note on super antimagicness of disconnected graphs, AKCE Int. J. Graphs Combin. 6(1) (2009), 47–55.MathSciNetzbMATHGoogle Scholar
  15. 42.
    M. Bača and M. Miller, Super Edge-Antimagic Graphs: A Wealth of Problems and Some Solutions, Brown Walker Press, Boca Raton, Florida, 2008.Google Scholar
  16. 45.
    M. Bača, F.A. Muntaner-Batle, A. Semaničová-Feňovčíková and M.K. Shafiq, On super (a,  2)-edge-antimagic total labeling of disconnected graphs, Ars Combin. 113 (2014), 129–137.MathSciNetzbMATHGoogle Scholar
  17. 47.
    M. Bača and A. Shabbir, Total labelings of toroidal polyhexes, Sci. Int. 24(3) (2012), 239–241.Google Scholar
  18. 48.
    M. Bača and M.Z. Youssef, Further results on antimagic graph labelings, Austral. J. Combin. 38 (2007), 163–172.MathSciNetzbMATHGoogle Scholar
  19. 52.
    C. Barrientos, Difference Vertex Labelings, Ph.D. Thesis, Universitat Politécnica de Catalunya, Barcelona, 2004.Google Scholar
  20. 54.
    E.T. Baskoro and A.A.G. Ngurah, On super edge-magic total labeling of nP 3, Bull. ICA 37 (2003), 82–87.zbMATHGoogle Scholar
  21. 59.
    J.C. Bermond, F. Comellas and D.F. Hsu, Distributed loop computer networks: A survey, J. Parallel Distrib. Comput. 24 (1995), 2–10.CrossRefGoogle Scholar
  22. 73.
    F. Boesch and R. Tindell, Circulants and their connectivities, J. Graph Theory 8 (1984), 487–499.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 78.
    G.G. Cash, Simple means of computing the Kekulé structure count for toroidal polyhex fullerenes, J. Chem. Inf. Comput. Sci. 38 (1998), 58–61.CrossRefGoogle Scholar
  24. 80.
    C.M. Cavalier, Graceful Labelings, Ph.D. Thesis, University of South Carolina, Columbia, 2009.Google Scholar
  25. 83.
    Dafik, M. Miller, J. Ryan and M. Bača, Antimagic labeling of the union of two stars, Austral. J. Combin. 42 (2008), 35–44.Google Scholar
  26. 84.
    Dafik, M. Miller, J. Ryan and M. Bača, On antimagic labelings of disjoint union of complete s-partite graphs, J. Combin. Math. Combin. Comput. 65 (2008), 41–49.Google Scholar
  27. 85.
    Dafik, M. Miller, J. Ryan and M. Bača, On super (a, d)-edge antimagic total labeling of disconnected graphs, Discrete Math. 309 (2009), 4909–4915.Google Scholar
  28. 86.
    Dafik, M. Miller, J. Ryan and M. Bača, Super edge-antimagic total labelings of mK n,n,n, Ars Combin. 101 (2011), 97–107.Google Scholar
  29. 88.
    M. Deza, P.W. Fowler, A. Rassat and K.M. Rogers, Fullerenes as tilings of surfaces, J. Chem. Inf. Comput. Sci. 40 (2000), 550–558.CrossRefGoogle Scholar
  30. 96.
    H. Enomoto, A.S. Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998), 105–109.MathSciNetzbMATHGoogle Scholar
  31. 98.
    R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings, Discrete Math. 231 (2001), 153–168.MathSciNetzbMATHCrossRefGoogle Scholar
  32. 100.
    R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, On edge-magic labelings of certain disjoint unions of graphs, Austral. J. Combin. 32 (2005), 225–242.MathSciNetzbMATHGoogle Scholar
  33. 107.
    Y. Fukuchi, Edge-magic labelings of generalized Petersen graph P(n,  2), Ars Combin. 59 (2001), 253–257.MathSciNetzbMATHGoogle Scholar
  34. 112.
    R.D. Godbold and P.J. Slater, All cycles are edge-magic, Bull. Inst. Combin. Appl. 22 (1998), 93–97.MathSciNetzbMATHGoogle Scholar
  35. 126.
    S.M. Hegde, On indexable graphs, J. Combin. Inform. System Sci. 17 (1992), 316–331.MathSciNetzbMATHGoogle Scholar
  36. 127.
    C. Heuberger, On planarity and colorability of circulant graphs, Discrete Math. 268 (2003), 153–169.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 131.
    M. Hussain, K. Ali, M.T. Rahim and E.T. Baskoro, On (a, d)-vertex-antimagic total labeling of Harary graphs, Utilitas Math. 83 (2010), 73–80.MathSciNetzbMATHGoogle Scholar
  38. 132.
    M. Hussain, E.T. Baskoro and K. Ali, On super antimagic total labeling of harary graph, Ars Combin. 104 (2012), 225–233.MathSciNetzbMATHGoogle Scholar
  39. 141.
    J. Ivančo and I. Lučkaničová, On edge-magic disconnected graphs, SUT J. Math. 38(2) (2002), 175–184.MathSciNetzbMATHGoogle Scholar
  40. 155.
    E.C. Kirby, R.B. Mallion and P. Pollak, Toridal polyhexes, J. Chem. Soc. Faraday Trans. 89(12) (1993), 1945–1953.CrossRefGoogle Scholar
  41. 156.
    E.C. Kirby and P. Pollak, How to enumerate the connectional isomers of a toridal polyhex fullerene, J. Chem. Inf. Comput. Sci. 38 (1998), 66–70.CrossRefGoogle Scholar
  42. 157.
    D.J. Klein, Elemental benzenoids, J. Chem. Inf. Comput. Sci. 34 (1994), 453–459.CrossRefGoogle Scholar
  43. 158.
    D.J. Klein and H. Zhu, Resonance in elemental benzenoids, Discrete Appl. Math. 67 (1996), 157–173.MathSciNetzbMATHCrossRefGoogle Scholar
  44. 163.
    A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451–461.MathSciNetzbMATHCrossRefGoogle Scholar
  45. 169.
    M.J. Lee, On super (a,  1)-edge-antimagic total labelings of grids and crowns, Ars Combin. 104 (2012), 97–105.MathSciNetzbMATHGoogle Scholar
  46. 170.
    M.J. Lee, On super (a,  1)-edge-antimagic total labelings of Cartesian product graphs, J. Discrete Math. Sciences and Cryptography 16(2–3) (2013), 117–124.MathSciNetzbMATHCrossRefGoogle Scholar
  47. 171.
    M.J. Lee, C. Lin and W.H. Tsai, On antimagic labeling for power of cycles, Ars Combin. 98 (2011), 161–165.MathSciNetzbMATHGoogle Scholar
  48. 173.
    M.J. Lee, W.H. Tsai and C. Lee, On super (a,  1)-edge-antimagic total labelings of subdivision of stars, Utilitas Math. 88 (2012), 355–365.MathSciNetzbMATHGoogle Scholar
  49. 200.
    M. Nalliah and S. Arumugam, Super (a, d)-edge-antimagic total labelings of generalized friendship graphs, J. Combin. Math. Combin. Comput. 84 (2013), 81–90.MathSciNetzbMATHGoogle Scholar
  50. 202.
    A.A.G. Ngurah and E.T. Baskoro, On magic and antimagic total labeling of generalized Petersen graph, Utilitas Math. 63 (2003), 97–107.MathSciNetzbMATHGoogle Scholar
  51. 213.
    P.R.L. Pushpam and A. Saibulla, On super (a, d)-edge antimagic total labeling of certain families of graphs, Discuss. Math. Graph Theory 32(3) (2012), 535–543.MathSciNetzbMATHCrossRefGoogle Scholar
  52. 214.
    P.R.L. Pushpam and A. Saibulla, Super (a, d)-edge antimagic total labeling of some classes of graphs, SUT J. Math. 48(1) (2012), 1–12.MathSciNetzbMATHGoogle Scholar
  53. 219.
    S. Rahmawati, K.A. Sugeng and D.R. Silaban, Construction of (a,  2)-edge antimagic vertex graph using adjacency matrix, Austral. J. Combin. 56 (2013), 257–272.zbMATHGoogle Scholar
  54. 220.
    S. Rahmawati, K.A. Sugeng, D.R. Silaban, M. Miller and M. Bača, Construction of new larger (a, d)-edge antimagic vertex graphs by using adjacency matrices, Austral. J. Combin. 56 (2013), 257–272.MathSciNetzbMATHGoogle Scholar
  55. 229.
    T.G. Schmalz, W.A. Seitz, D.J. Klein and G.E. Hite, Elemental carbon cages, J. Am. Chem. Soc. 110 (1988), 1113–1127.CrossRefGoogle Scholar
  56. 254.
    D.R. Silaban and K.A. Sugeng, Edge antimagic total labeling on paths and unicycles, J. Combin. Math. Combin. Comput. 65 (2008), 127–132.MathSciNetzbMATHGoogle Scholar
  57. 255.
    R. Simanjuntak and M. Miller, Survey of (a, d)-antimagic graph labelings, MIHMI 6 (2000), 179–184.Google Scholar
  58. 256.
    R. Simanjuntak, M. Miller and F. Bertault, Two new (a, d)-antimagic graph labelings, Proc. of the Eleventh Australasian Workshop on Combinatorial Algorithms (2000), 179–189.Google Scholar
  59. 266.
    I.W. Sudarsana, E.T. Baskoro, S. Uttunggadewa and D. Ismaimuza, Expansion techniques on the super edge antimagic total graphs, J. Combin. Math. Combin. Comput. 71 (2009), 189–199.MathSciNetzbMATHGoogle Scholar
  60. 267.
    I.W. Sudarsana, A. Hendra, Adiwijaya and D.Y. Setyawan, On super edge anti magic total labeling for t-joint copies of wheel, Far East J. Math. Sciences 69(2) (2012), 275–283.Google Scholar
  61. 268.
    I.W. Sudarsana, D. Ismaimuza, E.T. Baskoro and H. Assiyatun, On super (a, d)-edge-antimagic total labeling of disconnected graphs, J. Combin. Math. Combin. Comput. 55 (2005), 149–158.MathSciNetzbMATHGoogle Scholar
  62. 269.
    K.A. Sugeng and M. Miller, Relationship between adjacency matrices and super (a, d)-edge-antimagic total labeling of graphs, J. Combin. Math. Combin. Comput. 55 (2005), 71–82.MathSciNetzbMATHGoogle Scholar
  63. 270.
    K.A. Sugeng, M. Miller and M. Bača, Super edge-antimagic total labelings, Utilitas Math. 71 (2006), 131–141.MathSciNetzbMATHGoogle Scholar
  64. 273.
    K.A. Sugeng, M. Miller, Slamin and M. Bača, (a, d)-edge-antimagic total labelings of caterpillars, Lecture Notes in Comput. Sci. 3330 (2005), 169–180.Google Scholar
  65. 285.
    H. Ullah, G. Ali, M. Ali and A. Semaničová-Feňovčíková, On super (a, d)-edge-antimagic total labeling of special types of crown graphs, J. Appl. Math. 2013 (2013), no. 896815.Google Scholar
  66. 297.
    D. Ye, Z. Qi and H. Zhang, On k-resonant fullerene graphs, SIAM J. Discrete Math. 23(2) (2009), 1023–1044.MathSciNetzbMATHCrossRefGoogle Scholar
  67. 298.
    D. Ye and H. Zhang, 2-extendability of toroidal polyhexes and Klein-bottle polyhexes, Discrete Appl. Math. 157(2) (2009), 292–299.MathSciNetzbMATHCrossRefGoogle Scholar
  68. 299.
    D. Ye and H. Zhang, Extremal fullerene graphs with the maximum Clar number, Discrete Appl. Math. 157(14) (2009), 3152–3173.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Martin Bača
    • 1
  • Mirka Miller
    • 2
    • 3
  • Joe Ryan
    • 4
  • Andrea Semaničová-Feňovčíková
    • 1
  1. 1.Department of Applied Mathematics and InformaticsTechnical UniversityKošiceSlovakia
  2. 2.School of Mathematical and Physical SciencesUniversity of NewcastleCallaghanAustralia
  3. 3.Department of MathematicsUniversity of West BohemiaPilsenCzech Republic
  4. 4.School of Electrical Engineering and ComputingUniversity of NewcastleNewcastleAustralia

Personalised recommendations