Advertisement

Plans for Future Missions

Chapter
  • 433 Downloads
Part of the Advances in Global Change Research book series (AGLO, volume 67)

Abstract

This chapter speculates on the future, and as such, is highly uncertain given the fluid nature with which specific satellite missions are selected and deselected as budgets fluctuate and priorities are modified to suit political expediencies. To reduce some of this uncertainty, the chapter focuses instead on the evolving needs from an application as well as climate understanding perspective. While it is difficult to associate such needs or requirements with individual missions, it nonetheless point in the direction that the field must evolve towards. The other determinant for future missions that cannot be ignored are the expected technical advances to improve both instruments, satellites, and associated technology. Only then do we discuss future missions which are also divided into the immediate future, for which missions and sensors have already been defined, followed by a review of ongoing discussion to define the next generation of missions designed to address some the needs tied to improved weather and climate forecasts, as well as “process understanding” discussed in the first section.

Keywords

Precipitation Rainfall Snowfall Precipitation process Cloud-precipitation Satellite GEO LEO Microwave Infrared Radiometers Radar Climate Hydrology Meteorology Water cycle Numerical weather prediction Water vapor Clouds GCOS CEOS Smallsats CubeSats TROPICS TEMPEST-D RainCube WCOM EarthCARE 

References

  1. ACE. (2016). ACE 2011–2015 Progress report and future outlook. NASA Earth Science. Decadal Survey Studies, GSFC, 154 pp. [Available at https://acemission.gsfc.nasa.gov/documents/ACE_5YWP-FINAL_Redacted.pdf. Last accessed 11 Mar 2019]
  2. Ajayan, J., & Nirmal, D. (2015). A review of InP/InAlAs/InGaAs based transistors for high frequency applications. Superlattices and Microstructures, 86, 1–19.  https://doi.org/10.1016/j.spmi.2015.06.048.CrossRefGoogle Scholar
  3. Amayenc, P., Testud, J., & Marzoug, M. (1993). Proposal for a spaceborne dual-beam rain radar with Doppler capability. Journal of Atmospheric and Oceanic Technology, 10, 262–276.  https://doi.org/10.1175/1520-0426(1993)010<0262:PFASDB>2.0.CO;2.CrossRefGoogle Scholar
  4. Andrey-Andrés, J., Fourrié, N., Guidard, V., Armante, R., Brunel, P., Crevoisier, C., & Tournier, B. (2018). A simulated observation database to assess the impact of the IASI-NG hyperspectral infrared sounder. Atmospheric Measurement Techniques, 11, 803–818.  https://doi.org/10.5194/amt-11-803-2018.CrossRefGoogle Scholar
  5. Battaglia, A., & Kollias, P. (2019). Evaluation of differential absorption radars in the 183 GHz band for profiling water vapour in ice clouds. Atmospheric Measurement Techniques, 12, 3335–3349.  https://doi.org/10.5194/amt-12-3335-2019.CrossRefGoogle Scholar
  6. Battaglia, A., Westbrook, C. D., Kneifel, S., Kollias, P., Humpage, N., Löhnert, U., Tyynelä, J., & Petty, G. W. (2014). G band atmospheric radars: New frontiers in cloud physics. Atmospheric Measurement Techniques, 7, 1527–1546.  https://doi.org/10.5194/amt-7-1527-2014.CrossRefGoogle Scholar
  7. Battaglia, A., Dhillon, R., & Illingworth, A. (2018). Doppler W-band polarization diversity space-borne radar simulator for wind studies. Atmospheric Measurement Techniques, 11, 5965–5979.  https://doi.org/10.5194/amt-11-5965-2018.CrossRefGoogle Scholar
  8. Bernard, F., Calvel, B., Pasternak, F., Davancens, R., Buil, C., Baldit, E., Luitot, C., & Penquer, A. (2017). Overview of IASI-NG the new generation of infrared atmospheric sounder. Proceedings of SPIE, 10563.  https://doi.org/10.1117/12.2304101.
  9. Blackwell, W., Allen, G., Galbraith, C., Hancock, T., Leslie, R., Osaretin, I., Retherford, L., Scarito, M., Semisch, C., Shields, M., Silver, M., Toher, D., Wight, K., Miller, D., Cahoy, K., & Erickson, N. (2012). Nanosatellites for earth environmental monitoring: The MicroMAS project. Proceedings of IEEE Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), Roma, 5–9 Mar.,  https://doi.org/10.1109/MicroRad.2012.6185263.
  10. Blackwell, W. J., Braun, S., Bennartz, R., Velden, C., DeMaria, M., Atlas, R., Dunion, J., Marks, F., Rogers, R., Annane, B., & Leslie, R. V. (2018). An overview of the TROPICS NASA Earth Venture Mission. The Quarterly Journal of the Royal Meteorological Society, 144(S1), 16–26.  https://doi.org/10.1002/qj.3290.CrossRefGoogle Scholar
  11. Brown, S. T., Lambrigtsen, B., Denning, R. F., Gaier, T., Kangaslahti, P., Lim, B. H., Tanabe, J. M., & Tanner, A. B. (2011). The high-altitude MMIC sounding radiometer for the Global Hawk unmanned aerial vehicle: Instrument description and performance. IEEE Transactions on Geoscience and Remote Sensing, 49, 3291–3301.  https://doi.org/10.1109/TGRS.2011.2125973.CrossRefGoogle Scholar
  12. Buehler, S. A., Defer, E., Evans, F., Eliasson, S., Mendrok, J., Eriksson, P., Lee, C., Jiménez, C., Prigent, C., Crewell, S., Kasai, Y., Bennartz, R., & Gasiewski, A. J. (2012). Observing ice clouds in the submillimeter spectral range: The CloudIce mission proposal for ESA’s Earth Explorer 8. Atmospheric Measurement Techniques, 5, 1529–1549.  https://doi.org/10.5194/amt-5-1529-2012.CrossRefGoogle Scholar
  13. Chahat, N., Hodges, R., Sauder, J., Thomson, M., Peral, E., & Rahmat-Samii, Y. (2016). CubeSat deployable Ka-band mesh reflector antenna development for Earth science missions. IEEE Transactions on Antennas and Propagation, 64, 2083–2093.  https://doi.org/10.1109/TAP.2016.2546306.CrossRefGoogle Scholar
  14. Chase, R. J., Finlon, J. A., Borque, P., McFarquhar, G. M., Nesbitt, S. W., Tanelli, S., Sy, O. O., Durden, S. L., & Poellot, M. R. (2018). Evaluation of triple-frequency radar retrieval of snowfall properties using coincident airborne in situ observations during OLYMPEX. Geophysical Research Letters, 45, 5752–5760.  https://doi.org/10.1029/2018GL077997.CrossRefGoogle Scholar
  15. Cooper, K. B., Rodriguez Monje, R., Millán, L., Lebsock, M., Tanelli, S., Siles, J. V., Lee, C., & Brown, A. (2018). Atmospheric humidity sounding using differential absorption radar near 183 GHz. IEEE Geoscience and Remote Sensing Letters, 15, 163–167.  https://doi.org/10.1109/LGRS.2017.2776078.CrossRefGoogle Scholar
  16. Deal, W. R., Leong, K., Radisic, V., Sarkozy, S., Gorospe, B., Lee, J., Liu, P. H., Yoshida, W., Zhou, J., Lange, M., Lai, R., & Mei, X. B. (2011). Low noise amplification at 0.67 THz using 30 nm InP HEMTs. IEEE Microwave and Wireless Components Letters, 21, 368–370.  https://doi.org/10.1109/LMWC.2011.2143701.CrossRefGoogle Scholar
  17. Deal, W. R., Kangaslahti, P., Zamora, A., Schlecht, E., Leong, K., Mei, G., Shih, S., & Reising, S. C. (2016). 25 nm InP HEMT LNAs and receiver technology for the TWICE instrument. NASA Earth Science Technology Forum, Annapolis, 14–16 Jun. [Abstract available at https://esto.nasa.gov/forum/estf2016/abstracts/Deal_Reising.htm. Last accessed 19 Mar. 2019]
  18. Decadal Survey (Ed.). (2017). Thriving on our changing planet: A decadal strategy for Earth observation from space (p. 716). Washington, DC: The National Academies Press.  https://doi.org/10.17226/24938.CrossRefGoogle Scholar
  19. Durden, S. L., Siqueira, P. R., & Tanelli, S. (2007). On the use of multiantenna radars for spaceborne Doppler precipitation measurements. IEEE Geoscience and Remote Sensing Letters, 4, 181–183.  https://doi.org/10.1109/LGRS.2006.887136.CrossRefGoogle Scholar
  20. Fabry, F. (2001). Using radars as radiometers: Promises and pitfalls. Prepr. 30th International Conference on Radar Meteorology, Munich, Germany, American Meteorological Society, 197–198. [Available at https://ams.confex.com/ams/30radar/webprogram/Paper21576.html. Last accessed 12 Feb 2019]
  21. Furukawa, K., Yamamoto, K., Kubota, T., Oki, R., & Iguchi, T. (2015). Current status of the dual-frequency precipitation radar on the Global Precipitation Measurement core spacecraft and scan pattern change test operations results. Proceedings of SPIE Remote Sensing of the Atmosphere, Clouds, and Precipitation VII, 107762.  https://doi.org/10.1117/12.2323964.
  22. Gaier, T., Kangaslahti, P., Lambrigtsen, B., Ramos-Perez, I., Tanner, A., McKague, D., Ruf, C., Flynn, M., Zhang, Z., Backhus, R., & Austerberry, D. (2016). A 180 GHz prototype for a geostationary microwave imager/sounder-GEOSTAR-III. IGARSS 2016, Beijing, 10–15 July, 2021–2023.  https://doi.org/10.1109/IGARSS.2016.7729521.
  23. GCOS. (2016). The global observing system for climate: Implementation needs. WMO, GCOS-200, 315 pp. [Available at https://gcos.wmo.int/en/gcos-implementation-plan. Last accessed 8 Feb 2019]
  24. Haddad, Z. S., Sy, O. O., Hristova-Veleva, S., & Stephens, G. L. (2017). Derived observations from frequently sampled microwave measurements of precipitation. Part I: Relations to atmospheric thermodynamics. IEEE Transactions on Geoscience and Remote Sensing, 55, 3441–3453.  https://doi.org/10.1109/TGRS.2017.2671598.CrossRefGoogle Scholar
  25. Hohmann, T., Fay, J., Dunlap, C., & Klein, M. (2019). Deployable W-band antennas for CubeSats, NanoSats, and SmallSats. 99th AMS Annual Meeting, Phoenix, 6–10 Jan. [Available at https://ams.confex.com/ams/2019Annual/meetingapp.cgi/Paper/350574. Last accessed 19 Mar 2019]
  26. Houze, R. A., McMurdie, L. A., Petersen, W. A., Schwaller, M. R., Baccus, W., Lundquist, J. D., Mass, C. F., Nijssen, B., Rutledge, S. A., Hudak, D. R., Tanelli, S., Mace, G. G., Poellot, M. R., Lettenmaier, D. P., Zagrodnik, J. P., Rowe, A. K., DeHart, J. C., Madaus, L. E., Barnes, H. C., & Chandrasekar, V. (2017). The Olympic Mountains Experiment (OLYMPEX). Bulletin of the American Meteorological Society, 98, 2167–2188.  https://doi.org/10.1175/BAMS-D-16-0182.1.CrossRefGoogle Scholar
  27. Huffman, G. J., Ferraro, R., Kidd, C., Levizzani, V., & Turk, F. J. (2016). Requirements for a robust precipitation constellation. 14th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment, MicroRad, Espoo, Finland, 11–14 Apr.  https://doi.org/10.1109/MICRORAD.2016.7530500.
  28. Illingworth, A. J., Barker, H. W., Beljaars, A., Ceccaldi, M., Chepfer, H., Clerbaux, N., Cole, J., Delanoë, J., Domenech, C., Donovan, D. P., Fukuda, S., Hirakata, M., Hogan, R. J., Huenerbein, A., Kollias, P., Kubota, T., Nakajima, T., Nakajima, T. Y., Nishizawa, T., Ohno, Y., Okamoto, H., Oki, R., Sato, K., Satoh, M., Shephard, M. W., Velázquez-Blázquez, A., Wandinger, U., Wehr, T., & van Zadelhoff, G.-J. (2016). The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bulletin of the American Meteorological Society, 96, 1311–1332.  https://doi.org/10.1175/BAMS-D-12-00227.1.CrossRefGoogle Scholar
  29. Illingworth, A. J., Battaglia, A., Bradford, J., Forsythe, M., Joe, P., Kollias, P., Lean, K., Lori, M., Mahfouf, J.-F., Melo, S., Midthassel, R., Munro, Y., Nicol, J., Potthast, R., Rennie, M., Stein, T. H. M., Tanelli, S., Tridon, F., Walden, C. J., & Wolde, M. (2018). WIVERN: A new satellite concept to provide global in-cloud winds, precipitation, and cloud properties. Bulletin of the American Meteorological Society, 99, 1669–1687.  https://doi.org/10.1175/BAMS-D-16-0047.1.CrossRefGoogle Scholar
  30. Im, E., Durden, S. L., Rahrnat-Sarnii, Y., Fang, H., Cable, V., Lou, M., & Huang, J. (2004). Advanced geostationary radar for hurricane monitoring and studies. Proceedings 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509), Philadelphia, PA, 307–311.  https://doi.org/10.1109/NRC.2004.1316440.
  31. Kangas, V., D’Addio, S., Betto, M., Barre, H., Loiselet, M., & Mason, G. (2012). Metop second generation microwave sounding and microwave imaging missions. Proceedings 2012 EUMETSAT Meteor. Satellite Conference, Sopot, Poland, Sept. 3–7. [Available at https://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CONF_P61_S1_09_KANGAS_V&RevisionSelectionMethod=LatestReleased&Rendition=Web. Last accessed 14 Feb 2019]
  32. Kangas, V., D’Addio, S., Klein, U., Loiselet, M., Mason, G., Orlhac, J.-C., Gonzalez, R., Bergada, M., Brandt, M., & Thomas, B. (2014). Ice cloud imager instrument for MetOp second generation. 13th Specialist Meeting on Microwave Radiometry and Remote Sensing, MicroRad, Pasadena, CA, 24–27 Mar, 228–231.  https://doi.org/10.1109/MicroRad.2014.6878946.
  33. Kirschbaum, D. B., Huffman, G. J., Adler, R. F., Braun, S., Garrett, K., Jones, E., McNally, A., Skofronick-Jackson, G., Stocker, E., Wu, H., & Zaitchik, B. F. (2017). NASA’s remotely sensed precipitation: A reservoir for applications users. Bulletin of the American Meteorological Society, 98, 1169–1198.  https://doi.org/10.1175/BAMS-D-15-00296.1.CrossRefGoogle Scholar
  34. Kollias, P., Bharadwaj, N., Widener, K., Jo, I., & Johnson, K. (2014). Scanning ARM cloud radars. Part I: Operational sampling strategies. The Journal of Atmospheric and Oceanic Technology, 31, 569–582.  https://doi.org/10.1175/JTECH-D-13-00044.1.CrossRefGoogle Scholar
  35. Kucera, P. A., Ebert, E. E., Turk, F. J., Levizzani, V., Kirschbaum, D. B., Tapiador, F. J., Loew, A., & Borsche, M. (2013). Precipitation from space: Advancing Earth system science. Bulletin of the American Meteorological Society, 94, 365–375.  https://doi.org/10.1175/BAMS-D-11-00171.1.CrossRefGoogle Scholar
  36. Leong, K. M. K. H., Mei, X., Yoshida, W. H., Zamora, A., Padilla, J. G., Gorospe, B. S., Nguyen, K., & Deal, W. R. (2017). 850 GHz receiver and transmitter front-ends using InP HEMT. IEEE Transactions on Terahertz Science and Technology, 7, 466–475.  https://doi.org/10.1109/TTHZ.2017.2710632.CrossRefGoogle Scholar
  37. Lettenmaier, D. P. (2017). Observational breakthroughs lead the way to improved hydrological predictions. Water Resources Research, 53, 2591–2597.  https://doi.org/10.1002/2017WR020896.CrossRefGoogle Scholar
  38. Lettenmaier, D. P., Alsdorf, D., Dozier, J., Huffman, G. J., Pan, M., & Wood, E. F. (2015). Inroads of remote sensing into hydrologic science during the WRR era. Water Resources Research, 51, 7309–7342.  https://doi.org/10.1002/2015WR017616.CrossRefGoogle Scholar
  39. Levizzani, V., Kidd, C., Aonashi, K., Bennartz, R., Ferraro, R. R., Huffman, G. J., Roca, R., Turk, F. J., & Wang, N.-Y. (2018). The activities of the International Precipitation Working Group. Quarterly Journal of the Royal Meteorological Society, 144(S1), 3–15.  https://doi.org/10.1002/qj.3214.CrossRefGoogle Scholar
  40. Li, Z., Li, J., Schmit, T. J., Wang, P., Lim, A., Li, J., Nagle, F. W., Bai, W., Otkin, J. A., Atlas, R., Hoffman, R. N., Boukabara, S.-A., Zhu, T., Blackwell, W. J., & Pagano, T. S. (2019). The alternative of CubeSat-based advanced infrared and microwave sounders for high impact weather forecasting. Atmospheric and Oceanic Science Letters, 12, 80–90.  https://doi.org/10.1080/16742834.2019.1568816.CrossRefGoogle Scholar
  41. Liu, L., Alt, A. R., Benedickter, H., & Bolognesi, C. R. (2011). InP/GaInAs pHEMT ultralow-power consumption MMICs. IEEE Compound Semiconductor Integrated Circuit Symp. (CSICS), Waikoloa, Hawaii, 16–19 Nov.,  https://doi.org/10.1109/CSICS.2011.6062493.
  42. Liu, Y., Buehler, S. A., Brath, M., Liu, H., & Dong, X. (2018). Ensemble optimization retrieval algorithm of hydrometeor profiles for the Ice Cloud Imager submillimeter-wave radiometer. Journal of Geophysical Research, 123, 4594–4612.  https://doi.org/10.1002/2017JD027892.CrossRefGoogle Scholar
  43. Mace, G. G., Avey, S., Cooper, S., Lebsock, M., Tanelli, S., & Dobrowalski, G. (2016). Retrieving co-occurring cloud and precipitation properties of warm marine boundary layer clouds with A-Train data. Journal of Geophysical Research, 121, 4008–4033.  https://doi.org/10.1002/2015JD023681.CrossRefGoogle Scholar
  44. Madry, S., Martinez, P., & Laufer, R. (2018). Small satellites and the U. N. sustainable development goals. In Innovative design, manufacturing and testing of small satellites (pp. 65–79). Cham: Springer Praxis Books.  https://doi.org/10.1007/978-3-319-75094-1_5.CrossRefGoogle Scholar
  45. Marsh, S. (2006). Practical MMIC design (p. 356). Norwood: Artech House. ISBN-10: 1-59693-036-5.Google Scholar
  46. Meneghini, R., & Kozu, T. (1990). Spaceborne weather radar (p. 199). Boston: Artech House Publ. ISBN: 0890063826.Google Scholar
  47. Muraki, Y. (2017). Concept of Asian small precipitation radar constellation. 68th International Astronautical Congress, Paper ID. 37216. [Available at https://iafastro.directory/iac/paper/id/37216/abstract-pdf/IAC-17,B1,1,7,x37216.brief.pdf?2017-04-03.15:45:03. Last accessed 10 Mar 2019]
  48. Okazaki, A., Honda, T., Kotsuki, S., Yamaji, M., Kubota, T., Oki, R., Iguchi, T., & Miyoshi, T. (2019). Simulating precipitation radar observations from a geostationary satellite. Atmospheric Measurement Techniques, 12, 3985–3996.  https://doi.org/10.5194/amt-12-3985-2019.
  49. Paganini, M., Petiteville, I., Ward, S., Dyke, G., Steventon, M., Harry, J., & Kerblat, F., (Eds.) (2018). Satellite Earth observations in support of the sustainable development goals. CEOS, ESA-EOGB, 107 pp. [Available at http://eohandbook.com/sdg/files/CEOS_EOHB_2018_SDG.pdf. Last accessed 11 Feb 2019]
  50. Pazmany, A. L., Galloway, J. C., Mead, J. B., Popstefanija, I., McIntosh, R. E., & Bluestein, H. W. (1999). Polarization diversity pulse-pair technique for millimeter-wave Doppler radar measurements of severe storm features. Journal of Atmospheric and Oceanic Technology, 16, 1900–1911.  https://doi.org/10.1175/1520-0426(1999)016<1900:PDPPTF>2.0.CO;2.CrossRefGoogle Scholar
  51. Peral, E., Imken, T., Sauder, J., Statham, S., Tanelli, S., Price, D., Chahat, N., & Williams, A. (2017). RainCube, a Ka-band precipitation radar in a 6U CubeSat. 31st Annual AIAA/USU Conference on Small Satellites, Logan, UT, Aug 31–3 Sept., SSC17-III-03. [Available at https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=3611&context=smallsat. Last accessed 13 Feb 2019]
  52. Peral, E., Im, E., Wye, L., Lee, S., Tanelli, S., Rahmat-Samii, Y., Horst, S., Hoffman, J., Yun, S.-H., Imken, T., & Hawkins, D. (2018). Radar technologies for Earth remote sensing from CubeSat platforms. Proceedings of the IEEE, 106, 404–418.  https://doi.org/10.1109/JPROC.2018.2793179.CrossRefGoogle Scholar
  53. Peral, E., Tanelli, S., Statham, S., Joshi, S., Imken, T., Price, D., Sauder, J., Chahat, N., & Williams, A. (2019). RainCube – The first ever radar measurements from a CubeSat in space. The Journal of Applied Remote Sensing, 13(3), 032504.CrossRefGoogle Scholar
  54. Reising, S. C., Gaier, T. C., Kummerow, C. D., Padmanabhan, S., Lim, B. H., Heneghan, C., Berg, W. K., Chandrasekar, V., Olson, J. P., Brown, S. T., Carvo, J., & Pallas, M. (2017). Global measurement of temporal signatures of precipitation: Development of the temporal experiment for storms and tropical systems technology demonstration mission. IGARSS 2017, Ft. Worth, TX, 23–28 July, 5931–5933.  https://doi.org/10.1109/IGARSS.2017.8128359.
  55. Reising, S. C., Gaier T. C., Padmanabhan S., Lim B. H., Heneghan C., Kummerow C. D., Berg W. K., Chandrasekar V., Radhakrishnan C., Brown S. T., Carvo J., & Pallas M. (2018a). An Earth Venture in-space technology demonstration mission for Temporal Experiment for Storms and Tropical Systems (Tempest). IGARSS 2018, Valencia, 22–27 July, 6301–6303.  https://doi.org/10.1109/IGARSS.2018.8517330.
  56. Reising, S. C., Gaier, T., Brown, S. T., Padmanabhan, S., Kummerow, C. D., Chandrasekar, V., Heneghan, C., Lim, B., Berg, W. K., Schulte, R., Radhakrishnan, C., & Pallas, M. (2018b). Temporal Experiment for Storms and Tropical Systems Technology Demonstration (TEMPEST-D) mission: Early results and potential science capabilities. AGU: AG-A44G-05, Washington, DC, 10–14 Dec.Google Scholar
  57. Robertson, I. D., & Lucyszyn, S. (Eds.). (2001). RFIC and MMIC design and technology (p. 582). Herts: IET.  https://doi.org/10.1049/PBCS013E.CrossRefGoogle Scholar
  58. Roy, R. J., Lebsock, M., Millán, L., Dengler, R., Rodriguez Monje, R., Siles, J. V., & Cooper, K. B. (2018). Boundary-layer water vapor profiling using differential absorption radar. Atmospheric Measurement Techniques, 11, 6511–6523.  https://doi.org/10.5194/amt-11-6511-2018.CrossRefGoogle Scholar
  59. Samoska, L. A. (2011). An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime. IEEE Transactions on Terahertz Science and Technology, 1, 9–24.  https://doi.org/10.1109/TTHZ.2011.2159558.CrossRefGoogle Scholar
  60. Savage, R. C., Smith, E. A., & Mugnai, A. (1995). Concepts for a geostationary microwave imaging sounder (GeoMIS). IGARSS 1995, Firenze, 10–14 July, 652–654.  https://doi.org/10.1109/IGARSS.1995.520483.
  61. Skofronick-Jackson, G., Petersen, W. A., Berg, W., Kidd, C., Stocker, E. F., Kirschbaum, D. B., Kakar, R., Braun, S. A., Huffman, G. J., Iguchi, T., Kirstetter, P. E., Kummerow, C. D., Meneghini, R., Oki, R., Olson, W. S., Takayabu, Y. N., Furukawa, K., & Wilheit, T. (2017). The Global Precipitation Measurement (GPM) mission for science and society. Bulletin of the American Meteorological Society, 98, 1679–1695.  https://doi.org/10.1175/BAMS-D-15-00306.1.CrossRefGoogle Scholar
  62. Smith, P. M., Xu D., Ashman M., Yang X., Chao P. C., Chu K., Duh K. H. G., & Nichols K. (2016). 50nm MHEMT technology for ultra-sensitive low noise amplifiers. 2016 Electronics Design Innovation Conference, EDI-CON 2016, Boston, 19–21 Apr.Google Scholar
  63. Stephens, G. L., & Kummerow, C. D. (2007). The remote sensing of clouds and precipitation from space: A review. Journal of the Atmospheric Sciences, 64, 3742–3765.  https://doi.org/10.1175/2006JAS2375.1.CrossRefGoogle Scholar
  64. Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang, Z., Illingworth, A. J., O’Connor, E. J., Rossow, W. B., Durden, S. L., Miller, S. D., Austin, R. T., Benedetti, A., Mitrescu, C., & the CloudSat Science Team. (2002). The CloudSat mission and the A-train: A new dimension of space-based observations of clouds and precipitation. Bulletin of the American Meteorological Society, 83, 1771–1790.  https://doi.org/10.1175/BAMS-83-12-1771.CrossRefGoogle Scholar
  65. Sy, O. O., Tanelli, S., Takahashi, N., Ohno, Y., Horie, H., & Kollias, P. (2014). Simulation of EarthCARE spaceborne Doppler radar products using ground-based and airborne data: Effects of aliasing and nonuniform beam-filling. IEEE Transactions on Geoscience and Remote Sensing, 52, 1463–1479.  https://doi.org/10.1109/TGRS.2013.2251639.CrossRefGoogle Scholar
  66. Sy, O. O., Haddad, Z. S., Stephens, G. L., & Hristova-Veleva, S. (2017). Derived observations from frequently sampled microwave measurements of precipitation. Part II: Sensitivity to atmospheric variables and instrument parameters. IEEE Transactions on Geoscience and Remote Sensing, 55, 2898–2912.  https://doi.org/10.1109/TGRS.2017.2656061.CrossRefGoogle Scholar
  67. Takahashi, N. (2017). Surface echo characteristics derived from the wide swath experiment of the precipitation radar onboard TRMM satellite during its end-of-mission operation. IEEE Transactions on Geoscience and Remote Sensing, 55, 1988–1993.  https://doi.org/10.1109/TGRS.2016.2633971.CrossRefGoogle Scholar
  68. Takahashi, N., Hanado, H., Nakamura, K., Kanemaru, K., Nakagawa, K., Iguchi, T., Nio, T., Kubota, T., Oki, R., & Yoshida, N. (2016). Overview of the end-of-mission observation experiments of precipitation radar onboard the tropical rainfall measuring mission satellite. IEEE Transactions on Geoscience and Remote Sensing, 54, 3450–3459.  https://doi.org/10.1109/TGRS.2016.2518221.CrossRefGoogle Scholar
  69. Tanelli, S., Im, E., Kobayashi, S., Mascelloni, R., & Facheris, L. (2005). Spaceborne Doppler radar measurements of rainfall: Correction of errors induced by pointing uncertainties. Journal of Atmospheric and Oceanic Technology, 22, 1676–1690.  https://doi.org/10.1175/JTECH1797.1.CrossRefGoogle Scholar
  70. Tanelli, S., Durden, S. L., Im, E., Pak, K., Reinke, D. G., Partain, P., Haynes, J. M., & Marchand, R. T. (2008). Cloudsat’s cloud profiling radar after 2 years in orbit: Performance, calibration and processing. IEEE Transactions on Geoscience and Remote Sensing, 46, 3560–3573.  https://doi.org/10.1109/TGRS.2008.2002030.CrossRefGoogle Scholar
  71. Tanelli, S., Durden, S. L., & Johnson, M. P. (2016). Airborne demonstration of DPCA for velocity measurements of distributed targets. IEEE Geoscience and Remote Sensing Letters, 13, 1415–1419.  https://doi.org/10.1109/LGRS.2016.2581174.CrossRefGoogle Scholar
  72. Tanelli, S., Haddad, Z. S., Im, E., Durden, S. L., Sy, O. O., Sadowy, G. A., & Sanchez-Barbetty, M. (2018). Radar concepts for the next generation of spacebome observations of cloud and precipitation processes. IEEE Radar Conference (RadarConf18), Oklahoma City, OK, 1245–1249.Google Scholar
  73. Tanner, A. B., Wilson, W. J., Lambrigsten, B. H., Dinardo, S. J., Brown, S. T., Kangaslahti, P. P., Gaier, T. C., Ruf, C. S., Gross, S. M., Lim, B. H., Musko, S. B., Rogacki, S. A., & Piepmeier, J. R. (2007). Initial results of the Geostationary Synthetic Thinned Array Radiometer (GeoSTAR) demonstrator instrument. IEEE Transactions on Geoscience and Remote Sensing, 45, 1947–1957.  https://doi.org/10.1109/TGRS.2007.894060.CrossRefGoogle Scholar
  74. Tapiador, F. J., Navarro, A., Levizzani, V., García-Ortega, E., Huffman, G. J., Kidd, C., Kucera, P. A., Kummerow, C. D., Masunaga, H., Petersen, W. A., Roca, R., Sánchez, J.-L., Tao, W.-K., & Turk, F. J. (2017). Global precipitation measurements for validating climate models. Atmospheric Research, 197, 1–20.  https://doi.org/10.1016/j.atmosres.2017.06.021.CrossRefGoogle Scholar
  75. Tapiador, F. J., Roca, R., Del Genio, A., Dewitte, B., Petersen, W., & Zhang, F. (2019). Is precipitation a good metrics for model performance? Bulletin of the American Meteorological Society, 100, 223–233.  https://doi.org/10.1175/BAMS-D-17-0218.1.CrossRefGoogle Scholar
  76. Trenberth, K. E., & Zhang, Y. (2018). How often does it rain? Bulletin of the American Meteorological Society, 99, 289–298.  https://doi.org/10.1175/BAMS-D-17-0107.1.CrossRefGoogle Scholar
  77. Trenberth, K. E., Dai, A., Rasmussen, R. M., & Parsons, D. B. (2003). The changing character of precipitation. Bulletin of the American Meteorological Society, 84, 1205–1218.  https://doi.org/10.1175/BAMS-84-9-1205.CrossRefGoogle Scholar
  78. Weatherhead, E. C., Wielicki, B. A., Ramaswamy, V., Abbott, M., Ackerman, T. P., Atlas, R., Brasseur, G., Bruhwiler, L., Busalacchi, A. J., Butler, J. H., Clack, C. T. M., Cooke, R., Cucurull, L., Davis, S. M., English, J. M., Fahey, D. W., Fine, S. S., Lazo, J. K., Liang, S., Loeb, N. G., Rignot, E., Soden, B., Stanitski, D., Stephens, G., Tapley, B. D., Thompson, A. M., Trenberth, K. E., & Wuebbles, D. (2017). Designing the climate observing system of the future. Earth’s Future, 6, 80–102.  https://doi.org/10.1002/2017EF000627.CrossRefGoogle Scholar
  79. Wood, D., & Stober K. J. (2018). Small satellites contribute to the United Nation’s sustainable development goals. Proceedings of 32nd Annual AIAA/USU Conference on Small Satellites, Logan UT, 4-9 Aug., SSC18-WKVIII-08. [Available at https://digitalcommons.usu.edu/smallsat/2018/all2018/437/. Last accessed 19 Mar 2019]
  80. Wulder, M. A., & Coops, N. C. (2014). Satellites: Make Earth observations open access. Nature, 513, 30–31.  https://doi.org/10.1038/513030a.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Atmospheric ScienceColorado State UniversityFt. CollinsUSA
  2. 2.Jet Propulsion Laboratory (JPL)California Institute of TechnologyPasadenaUSA
  3. 3.Institute for Space-Earth Environmental Research, Nagoya UniversityNagoyaJapan
  4. 4.JAXATokyoJapan
  5. 5.Boulder Environmental Sciences and TechnologyBoulderUSA
  6. 6.National Research CouncilInstitute of Atmospheric Sciences and Climate (CNR-ISAC)BolognaItaly

Personalised recommendations