Skip to main content

Plans for Future Missions

  • Chapter
  • First Online:

Part of the book series: Advances in Global Change Research ((AGLO,volume 67))

Abstract

This chapter speculates on the future, and as such, is highly uncertain given the fluid nature with which specific satellite missions are selected and deselected as budgets fluctuate and priorities are modified to suit political expediencies. To reduce some of this uncertainty, the chapter focuses instead on the evolving needs from an application as well as climate understanding perspective. While it is difficult to associate such needs or requirements with individual missions, it nonetheless point in the direction that the field must evolve towards. The other determinant for future missions that cannot be ignored are the expected technical advances to improve both instruments, satellites, and associated technology. Only then do we discuss future missions which are also divided into the immediate future, for which missions and sensors have already been defined, followed by a review of ongoing discussion to define the next generation of missions designed to address some the needs tied to improved weather and climate forecasts, as well as “process understanding” discussed in the first section.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • ACE. (2016). ACE 2011–2015 Progress report and future outlook. NASA Earth Science. Decadal Survey Studies, GSFC, 154 pp. [Available at https://acemission.gsfc.nasa.gov/documents/ACE_5YWP-FINAL_Redacted.pdf. Last accessed 11 Mar 2019]

  • Ajayan, J., & Nirmal, D. (2015). A review of InP/InAlAs/InGaAs based transistors for high frequency applications. Superlattices and Microstructures, 86, 1–19. https://doi.org/10.1016/j.spmi.2015.06.048.

    Article  Google Scholar 

  • Amayenc, P., Testud, J., & Marzoug, M. (1993). Proposal for a spaceborne dual-beam rain radar with Doppler capability. Journal of Atmospheric and Oceanic Technology, 10, 262–276. https://doi.org/10.1175/1520-0426(1993)010<0262:PFASDB>2.0.CO;2.

    Article  Google Scholar 

  • Andrey-Andrés, J., Fourrié, N., Guidard, V., Armante, R., Brunel, P., Crevoisier, C., & Tournier, B. (2018). A simulated observation database to assess the impact of the IASI-NG hyperspectral infrared sounder. Atmospheric Measurement Techniques, 11, 803–818. https://doi.org/10.5194/amt-11-803-2018.

    Article  Google Scholar 

  • Battaglia, A., & Kollias, P. (2019). Evaluation of differential absorption radars in the 183 GHz band for profiling water vapour in ice clouds. Atmospheric Measurement Techniques, 12, 3335–3349. https://doi.org/10.5194/amt-12-3335-2019.

    Article  Google Scholar 

  • Battaglia, A., Westbrook, C. D., Kneifel, S., Kollias, P., Humpage, N., Löhnert, U., Tyynelä, J., & Petty, G. W. (2014). G band atmospheric radars: New frontiers in cloud physics. Atmospheric Measurement Techniques, 7, 1527–1546. https://doi.org/10.5194/amt-7-1527-2014.

    Article  Google Scholar 

  • Battaglia, A., Dhillon, R., & Illingworth, A. (2018). Doppler W-band polarization diversity space-borne radar simulator for wind studies. Atmospheric Measurement Techniques, 11, 5965–5979. https://doi.org/10.5194/amt-11-5965-2018.

    Article  Google Scholar 

  • Bernard, F., Calvel, B., Pasternak, F., Davancens, R., Buil, C., Baldit, E., Luitot, C., & Penquer, A. (2017). Overview of IASI-NG the new generation of infrared atmospheric sounder. Proceedings of SPIE, 10563. https://doi.org/10.1117/12.2304101.

  • Blackwell, W., Allen, G., Galbraith, C., Hancock, T., Leslie, R., Osaretin, I., Retherford, L., Scarito, M., Semisch, C., Shields, M., Silver, M., Toher, D., Wight, K., Miller, D., Cahoy, K., & Erickson, N. (2012). Nanosatellites for earth environmental monitoring: The MicroMAS project. Proceedings of IEEE Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), Roma, 5–9 Mar., https://doi.org/10.1109/MicroRad.2012.6185263.

  • Blackwell, W. J., Braun, S., Bennartz, R., Velden, C., DeMaria, M., Atlas, R., Dunion, J., Marks, F., Rogers, R., Annane, B., & Leslie, R. V. (2018). An overview of the TROPICS NASA Earth Venture Mission. The Quarterly Journal of the Royal Meteorological Society, 144(S1), 16–26. https://doi.org/10.1002/qj.3290.

    Article  Google Scholar 

  • Brown, S. T., Lambrigtsen, B., Denning, R. F., Gaier, T., Kangaslahti, P., Lim, B. H., Tanabe, J. M., & Tanner, A. B. (2011). The high-altitude MMIC sounding radiometer for the Global Hawk unmanned aerial vehicle: Instrument description and performance. IEEE Transactions on Geoscience and Remote Sensing, 49, 3291–3301. https://doi.org/10.1109/TGRS.2011.2125973.

    Article  Google Scholar 

  • Buehler, S. A., Defer, E., Evans, F., Eliasson, S., Mendrok, J., Eriksson, P., Lee, C., Jiménez, C., Prigent, C., Crewell, S., Kasai, Y., Bennartz, R., & Gasiewski, A. J. (2012). Observing ice clouds in the submillimeter spectral range: The CloudIce mission proposal for ESA’s Earth Explorer 8. Atmospheric Measurement Techniques, 5, 1529–1549. https://doi.org/10.5194/amt-5-1529-2012.

    Article  Google Scholar 

  • Chahat, N., Hodges, R., Sauder, J., Thomson, M., Peral, E., & Rahmat-Samii, Y. (2016). CubeSat deployable Ka-band mesh reflector antenna development for Earth science missions. IEEE Transactions on Antennas and Propagation, 64, 2083–2093. https://doi.org/10.1109/TAP.2016.2546306.

    Article  Google Scholar 

  • Chase, R. J., Finlon, J. A., Borque, P., McFarquhar, G. M., Nesbitt, S. W., Tanelli, S., Sy, O. O., Durden, S. L., & Poellot, M. R. (2018). Evaluation of triple-frequency radar retrieval of snowfall properties using coincident airborne in situ observations during OLYMPEX. Geophysical Research Letters, 45, 5752–5760. https://doi.org/10.1029/2018GL077997.

    Article  Google Scholar 

  • Cooper, K. B., Rodriguez Monje, R., Millán, L., Lebsock, M., Tanelli, S., Siles, J. V., Lee, C., & Brown, A. (2018). Atmospheric humidity sounding using differential absorption radar near 183 GHz. IEEE Geoscience and Remote Sensing Letters, 15, 163–167. https://doi.org/10.1109/LGRS.2017.2776078.

    Article  Google Scholar 

  • Deal, W. R., Leong, K., Radisic, V., Sarkozy, S., Gorospe, B., Lee, J., Liu, P. H., Yoshida, W., Zhou, J., Lange, M., Lai, R., & Mei, X. B. (2011). Low noise amplification at 0.67 THz using 30 nm InP HEMTs. IEEE Microwave and Wireless Components Letters, 21, 368–370. https://doi.org/10.1109/LMWC.2011.2143701.

    Article  Google Scholar 

  • Deal, W. R., Kangaslahti, P., Zamora, A., Schlecht, E., Leong, K., Mei, G., Shih, S., & Reising, S. C. (2016). 25 nm InP HEMT LNAs and receiver technology for the TWICE instrument. NASA Earth Science Technology Forum, Annapolis, 14–16 Jun. [Abstract available at https://esto.nasa.gov/forum/estf2016/abstracts/Deal_Reising.htm. Last accessed 19 Mar. 2019]

  • Decadal Survey (Ed.). (2017). Thriving on our changing planet: A decadal strategy for Earth observation from space (p. 716). Washington, DC: The National Academies Press. https://doi.org/10.17226/24938.

    Book  Google Scholar 

  • Durden, S. L., Siqueira, P. R., & Tanelli, S. (2007). On the use of multiantenna radars for spaceborne Doppler precipitation measurements. IEEE Geoscience and Remote Sensing Letters, 4, 181–183. https://doi.org/10.1109/LGRS.2006.887136.

    Article  Google Scholar 

  • Fabry, F. (2001). Using radars as radiometers: Promises and pitfalls. Prepr. 30th International Conference on Radar Meteorology, Munich, Germany, American Meteorological Society, 197–198. [Available at https://ams.confex.com/ams/30radar/webprogram/Paper21576.html. Last accessed 12 Feb 2019]

  • Furukawa, K., Yamamoto, K., Kubota, T., Oki, R., & Iguchi, T. (2015). Current status of the dual-frequency precipitation radar on the Global Precipitation Measurement core spacecraft and scan pattern change test operations results. Proceedings of SPIE Remote Sensing of the Atmosphere, Clouds, and Precipitation VII, 107762. https://doi.org/10.1117/12.2323964.

  • Gaier, T., Kangaslahti, P., Lambrigtsen, B., Ramos-Perez, I., Tanner, A., McKague, D., Ruf, C., Flynn, M., Zhang, Z., Backhus, R., & Austerberry, D. (2016). A 180 GHz prototype for a geostationary microwave imager/sounder-GEOSTAR-III. IGARSS 2016, Beijing, 10–15 July, 2021–2023. https://doi.org/10.1109/IGARSS.2016.7729521.

  • GCOS. (2016). The global observing system for climate: Implementation needs. WMO, GCOS-200, 315 pp. [Available at https://gcos.wmo.int/en/gcos-implementation-plan. Last accessed 8 Feb 2019]

  • Haddad, Z. S., Sy, O. O., Hristova-Veleva, S., & Stephens, G. L. (2017). Derived observations from frequently sampled microwave measurements of precipitation. Part I: Relations to atmospheric thermodynamics. IEEE Transactions on Geoscience and Remote Sensing, 55, 3441–3453. https://doi.org/10.1109/TGRS.2017.2671598.

    Article  Google Scholar 

  • Hohmann, T., Fay, J., Dunlap, C., & Klein, M. (2019). Deployable W-band antennas for CubeSats, NanoSats, and SmallSats. 99th AMS Annual Meeting, Phoenix, 6–10 Jan. [Available at https://ams.confex.com/ams/2019Annual/meetingapp.cgi/Paper/350574. Last accessed 19 Mar 2019]

  • Houze, R. A., McMurdie, L. A., Petersen, W. A., Schwaller, M. R., Baccus, W., Lundquist, J. D., Mass, C. F., Nijssen, B., Rutledge, S. A., Hudak, D. R., Tanelli, S., Mace, G. G., Poellot, M. R., Lettenmaier, D. P., Zagrodnik, J. P., Rowe, A. K., DeHart, J. C., Madaus, L. E., Barnes, H. C., & Chandrasekar, V. (2017). The Olympic Mountains Experiment (OLYMPEX). Bulletin of the American Meteorological Society, 98, 2167–2188. https://doi.org/10.1175/BAMS-D-16-0182.1.

    Article  Google Scholar 

  • Huffman, G. J., Ferraro, R., Kidd, C., Levizzani, V., & Turk, F. J. (2016). Requirements for a robust precipitation constellation. 14th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment, MicroRad, Espoo, Finland, 11–14 Apr. https://doi.org/10.1109/MICRORAD.2016.7530500.

  • Illingworth, A. J., Barker, H. W., Beljaars, A., Ceccaldi, M., Chepfer, H., Clerbaux, N., Cole, J., Delanoë, J., Domenech, C., Donovan, D. P., Fukuda, S., Hirakata, M., Hogan, R. J., Huenerbein, A., Kollias, P., Kubota, T., Nakajima, T., Nakajima, T. Y., Nishizawa, T., Ohno, Y., Okamoto, H., Oki, R., Sato, K., Satoh, M., Shephard, M. W., Velázquez-Blázquez, A., Wandinger, U., Wehr, T., & van Zadelhoff, G.-J. (2016). The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bulletin of the American Meteorological Society, 96, 1311–1332. https://doi.org/10.1175/BAMS-D-12-00227.1.

    Article  Google Scholar 

  • Illingworth, A. J., Battaglia, A., Bradford, J., Forsythe, M., Joe, P., Kollias, P., Lean, K., Lori, M., Mahfouf, J.-F., Melo, S., Midthassel, R., Munro, Y., Nicol, J., Potthast, R., Rennie, M., Stein, T. H. M., Tanelli, S., Tridon, F., Walden, C. J., & Wolde, M. (2018). WIVERN: A new satellite concept to provide global in-cloud winds, precipitation, and cloud properties. Bulletin of the American Meteorological Society, 99, 1669–1687. https://doi.org/10.1175/BAMS-D-16-0047.1.

    Article  Google Scholar 

  • Im, E., Durden, S. L., Rahrnat-Sarnii, Y., Fang, H., Cable, V., Lou, M., & Huang, J. (2004). Advanced geostationary radar for hurricane monitoring and studies. Proceedings 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509), Philadelphia, PA, 307–311. https://doi.org/10.1109/NRC.2004.1316440.

  • Kangas, V., D’Addio, S., Betto, M., Barre, H., Loiselet, M., & Mason, G. (2012). Metop second generation microwave sounding and microwave imaging missions. Proceedings 2012 EUMETSAT Meteor. Satellite Conference, Sopot, Poland, Sept. 3–7. [Available at https://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CONF_P61_S1_09_KANGAS_V&RevisionSelectionMethod=LatestReleased&Rendition=Web. Last accessed 14 Feb 2019]

  • Kangas, V., D’Addio, S., Klein, U., Loiselet, M., Mason, G., Orlhac, J.-C., Gonzalez, R., Bergada, M., Brandt, M., & Thomas, B. (2014). Ice cloud imager instrument for MetOp second generation. 13th Specialist Meeting on Microwave Radiometry and Remote Sensing, MicroRad, Pasadena, CA, 24–27 Mar, 228–231. https://doi.org/10.1109/MicroRad.2014.6878946.

  • Kirschbaum, D. B., Huffman, G. J., Adler, R. F., Braun, S., Garrett, K., Jones, E., McNally, A., Skofronick-Jackson, G., Stocker, E., Wu, H., & Zaitchik, B. F. (2017). NASA’s remotely sensed precipitation: A reservoir for applications users. Bulletin of the American Meteorological Society, 98, 1169–1198. https://doi.org/10.1175/BAMS-D-15-00296.1.

    Article  Google Scholar 

  • Kollias, P., Bharadwaj, N., Widener, K., Jo, I., & Johnson, K. (2014). Scanning ARM cloud radars. Part I: Operational sampling strategies. The Journal of Atmospheric and Oceanic Technology, 31, 569–582. https://doi.org/10.1175/JTECH-D-13-00044.1.

    Article  Google Scholar 

  • Kucera, P. A., Ebert, E. E., Turk, F. J., Levizzani, V., Kirschbaum, D. B., Tapiador, F. J., Loew, A., & Borsche, M. (2013). Precipitation from space: Advancing Earth system science. Bulletin of the American Meteorological Society, 94, 365–375. https://doi.org/10.1175/BAMS-D-11-00171.1.

    Article  Google Scholar 

  • Leong, K. M. K. H., Mei, X., Yoshida, W. H., Zamora, A., Padilla, J. G., Gorospe, B. S., Nguyen, K., & Deal, W. R. (2017). 850 GHz receiver and transmitter front-ends using InP HEMT. IEEE Transactions on Terahertz Science and Technology, 7, 466–475. https://doi.org/10.1109/TTHZ.2017.2710632.

    Article  Google Scholar 

  • Lettenmaier, D. P. (2017). Observational breakthroughs lead the way to improved hydrological predictions. Water Resources Research, 53, 2591–2597. https://doi.org/10.1002/2017WR020896.

    Article  Google Scholar 

  • Lettenmaier, D. P., Alsdorf, D., Dozier, J., Huffman, G. J., Pan, M., & Wood, E. F. (2015). Inroads of remote sensing into hydrologic science during the WRR era. Water Resources Research, 51, 7309–7342. https://doi.org/10.1002/2015WR017616.

    Article  Google Scholar 

  • Levizzani, V., Kidd, C., Aonashi, K., Bennartz, R., Ferraro, R. R., Huffman, G. J., Roca, R., Turk, F. J., & Wang, N.-Y. (2018). The activities of the International Precipitation Working Group. Quarterly Journal of the Royal Meteorological Society, 144(S1), 3–15. https://doi.org/10.1002/qj.3214.

    Article  Google Scholar 

  • Li, Z., Li, J., Schmit, T. J., Wang, P., Lim, A., Li, J., Nagle, F. W., Bai, W., Otkin, J. A., Atlas, R., Hoffman, R. N., Boukabara, S.-A., Zhu, T., Blackwell, W. J., & Pagano, T. S. (2019). The alternative of CubeSat-based advanced infrared and microwave sounders for high impact weather forecasting. Atmospheric and Oceanic Science Letters, 12, 80–90. https://doi.org/10.1080/16742834.2019.1568816.

    Article  Google Scholar 

  • Liu, L., Alt, A. R., Benedickter, H., & Bolognesi, C. R. (2011). InP/GaInAs pHEMT ultralow-power consumption MMICs. IEEE Compound Semiconductor Integrated Circuit Symp. (CSICS), Waikoloa, Hawaii, 16–19 Nov., https://doi.org/10.1109/CSICS.2011.6062493.

  • Liu, Y., Buehler, S. A., Brath, M., Liu, H., & Dong, X. (2018). Ensemble optimization retrieval algorithm of hydrometeor profiles for the Ice Cloud Imager submillimeter-wave radiometer. Journal of Geophysical Research, 123, 4594–4612. https://doi.org/10.1002/2017JD027892.

    Article  Google Scholar 

  • Mace, G. G., Avey, S., Cooper, S., Lebsock, M., Tanelli, S., & Dobrowalski, G. (2016). Retrieving co-occurring cloud and precipitation properties of warm marine boundary layer clouds with A-Train data. Journal of Geophysical Research, 121, 4008–4033. https://doi.org/10.1002/2015JD023681.

    Article  Google Scholar 

  • Madry, S., Martinez, P., & Laufer, R. (2018). Small satellites and the U. N. sustainable development goals. In Innovative design, manufacturing and testing of small satellites (pp. 65–79). Cham: Springer Praxis Books. https://doi.org/10.1007/978-3-319-75094-1_5.

    Chapter  Google Scholar 

  • Marsh, S. (2006). Practical MMIC design (p. 356). Norwood: Artech House. ISBN-10: 1-59693-036-5.

    Google Scholar 

  • Meneghini, R., & Kozu, T. (1990). Spaceborne weather radar (p. 199). Boston: Artech House Publ. ISBN: 0890063826.

    Google Scholar 

  • Muraki, Y. (2017). Concept of Asian small precipitation radar constellation. 68th International Astronautical Congress, Paper ID. 37216. [Available at https://iafastro.directory/iac/paper/id/37216/abstract-pdf/IAC-17,B1,1,7,x37216.brief.pdf?2017-04-03.15:45:03. Last accessed 10 Mar 2019]

  • Okazaki, A., Honda, T., Kotsuki, S., Yamaji, M., Kubota, T., Oki, R., Iguchi, T., & Miyoshi, T. (2019). Simulating precipitation radar observations from a geostationary satellite. Atmospheric Measurement Techniques, 12, 3985–3996. https://doi.org/10.5194/amt-12-3985-2019.

  • Paganini, M., Petiteville, I., Ward, S., Dyke, G., Steventon, M., Harry, J., & Kerblat, F., (Eds.) (2018). Satellite Earth observations in support of the sustainable development goals. CEOS, ESA-EOGB, 107 pp. [Available at http://eohandbook.com/sdg/files/CEOS_EOHB_2018_SDG.pdf. Last accessed 11 Feb 2019]

  • Pazmany, A. L., Galloway, J. C., Mead, J. B., Popstefanija, I., McIntosh, R. E., & Bluestein, H. W. (1999). Polarization diversity pulse-pair technique for millimeter-wave Doppler radar measurements of severe storm features. Journal of Atmospheric and Oceanic Technology, 16, 1900–1911. https://doi.org/10.1175/1520-0426(1999)016<1900:PDPPTF>2.0.CO;2.

    Article  Google Scholar 

  • Peral, E., Imken, T., Sauder, J., Statham, S., Tanelli, S., Price, D., Chahat, N., & Williams, A. (2017). RainCube, a Ka-band precipitation radar in a 6U CubeSat. 31st Annual AIAA/USU Conference on Small Satellites, Logan, UT, Aug 31–3 Sept., SSC17-III-03. [Available at https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=3611&context=smallsat. Last accessed 13 Feb 2019]

  • Peral, E., Im, E., Wye, L., Lee, S., Tanelli, S., Rahmat-Samii, Y., Horst, S., Hoffman, J., Yun, S.-H., Imken, T., & Hawkins, D. (2018). Radar technologies for Earth remote sensing from CubeSat platforms. Proceedings of the IEEE, 106, 404–418. https://doi.org/10.1109/JPROC.2018.2793179.

    Article  Google Scholar 

  • Peral, E., Tanelli, S., Statham, S., Joshi, S., Imken, T., Price, D., Sauder, J., Chahat, N., & Williams, A. (2019). RainCube – The first ever radar measurements from a CubeSat in space. The Journal of Applied Remote Sensing, 13(3), 032504.

    Article  Google Scholar 

  • Reising, S. C., Gaier, T. C., Kummerow, C. D., Padmanabhan, S., Lim, B. H., Heneghan, C., Berg, W. K., Chandrasekar, V., Olson, J. P., Brown, S. T., Carvo, J., & Pallas, M. (2017). Global measurement of temporal signatures of precipitation: Development of the temporal experiment for storms and tropical systems technology demonstration mission. IGARSS 2017, Ft. Worth, TX, 23–28 July, 5931–5933. https://doi.org/10.1109/IGARSS.2017.8128359.

  • Reising, S. C., Gaier T. C., Padmanabhan S., Lim B. H., Heneghan C., Kummerow C. D., Berg W. K., Chandrasekar V., Radhakrishnan C., Brown S. T., Carvo J., & Pallas M. (2018a). An Earth Venture in-space technology demonstration mission for Temporal Experiment for Storms and Tropical Systems (Tempest). IGARSS 2018, Valencia, 22–27 July, 6301–6303. https://doi.org/10.1109/IGARSS.2018.8517330.

  • Reising, S. C., Gaier, T., Brown, S. T., Padmanabhan, S., Kummerow, C. D., Chandrasekar, V., Heneghan, C., Lim, B., Berg, W. K., Schulte, R., Radhakrishnan, C., & Pallas, M. (2018b). Temporal Experiment for Storms and Tropical Systems Technology Demonstration (TEMPEST-D) mission: Early results and potential science capabilities. AGU: AG-A44G-05, Washington, DC, 10–14 Dec.

    Google Scholar 

  • Robertson, I. D., & Lucyszyn, S. (Eds.). (2001). RFIC and MMIC design and technology (p. 582). Herts: IET. https://doi.org/10.1049/PBCS013E.

    Book  Google Scholar 

  • Roy, R. J., Lebsock, M., Millán, L., Dengler, R., Rodriguez Monje, R., Siles, J. V., & Cooper, K. B. (2018). Boundary-layer water vapor profiling using differential absorption radar. Atmospheric Measurement Techniques, 11, 6511–6523. https://doi.org/10.5194/amt-11-6511-2018.

    Article  Google Scholar 

  • Samoska, L. A. (2011). An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime. IEEE Transactions on Terahertz Science and Technology, 1, 9–24. https://doi.org/10.1109/TTHZ.2011.2159558.

    Article  Google Scholar 

  • Savage, R. C., Smith, E. A., & Mugnai, A. (1995). Concepts for a geostationary microwave imaging sounder (GeoMIS). IGARSS 1995, Firenze, 10–14 July, 652–654. https://doi.org/10.1109/IGARSS.1995.520483.

  • Skofronick-Jackson, G., Petersen, W. A., Berg, W., Kidd, C., Stocker, E. F., Kirschbaum, D. B., Kakar, R., Braun, S. A., Huffman, G. J., Iguchi, T., Kirstetter, P. E., Kummerow, C. D., Meneghini, R., Oki, R., Olson, W. S., Takayabu, Y. N., Furukawa, K., & Wilheit, T. (2017). The Global Precipitation Measurement (GPM) mission for science and society. Bulletin of the American Meteorological Society, 98, 1679–1695. https://doi.org/10.1175/BAMS-D-15-00306.1.

    Article  Google Scholar 

  • Smith, P. M., Xu D., Ashman M., Yang X., Chao P. C., Chu K., Duh K. H. G., & Nichols K. (2016). 50nm MHEMT technology for ultra-sensitive low noise amplifiers. 2016 Electronics Design Innovation Conference, EDI-CON 2016, Boston, 19–21 Apr.

    Google Scholar 

  • Stephens, G. L., & Kummerow, C. D. (2007). The remote sensing of clouds and precipitation from space: A review. Journal of the Atmospheric Sciences, 64, 3742–3765. https://doi.org/10.1175/2006JAS2375.1.

    Article  Google Scholar 

  • Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang, Z., Illingworth, A. J., O’Connor, E. J., Rossow, W. B., Durden, S. L., Miller, S. D., Austin, R. T., Benedetti, A., Mitrescu, C., & the CloudSat Science Team. (2002). The CloudSat mission and the A-train: A new dimension of space-based observations of clouds and precipitation. Bulletin of the American Meteorological Society, 83, 1771–1790. https://doi.org/10.1175/BAMS-83-12-1771.

    Article  Google Scholar 

  • Sy, O. O., Tanelli, S., Takahashi, N., Ohno, Y., Horie, H., & Kollias, P. (2014). Simulation of EarthCARE spaceborne Doppler radar products using ground-based and airborne data: Effects of aliasing and nonuniform beam-filling. IEEE Transactions on Geoscience and Remote Sensing, 52, 1463–1479. https://doi.org/10.1109/TGRS.2013.2251639.

    Article  Google Scholar 

  • Sy, O. O., Haddad, Z. S., Stephens, G. L., & Hristova-Veleva, S. (2017). Derived observations from frequently sampled microwave measurements of precipitation. Part II: Sensitivity to atmospheric variables and instrument parameters. IEEE Transactions on Geoscience and Remote Sensing, 55, 2898–2912. https://doi.org/10.1109/TGRS.2017.2656061.

    Article  Google Scholar 

  • Takahashi, N. (2017). Surface echo characteristics derived from the wide swath experiment of the precipitation radar onboard TRMM satellite during its end-of-mission operation. IEEE Transactions on Geoscience and Remote Sensing, 55, 1988–1993. https://doi.org/10.1109/TGRS.2016.2633971.

    Article  Google Scholar 

  • Takahashi, N., Hanado, H., Nakamura, K., Kanemaru, K., Nakagawa, K., Iguchi, T., Nio, T., Kubota, T., Oki, R., & Yoshida, N. (2016). Overview of the end-of-mission observation experiments of precipitation radar onboard the tropical rainfall measuring mission satellite. IEEE Transactions on Geoscience and Remote Sensing, 54, 3450–3459. https://doi.org/10.1109/TGRS.2016.2518221.

    Article  Google Scholar 

  • Tanelli, S., Im, E., Kobayashi, S., Mascelloni, R., & Facheris, L. (2005). Spaceborne Doppler radar measurements of rainfall: Correction of errors induced by pointing uncertainties. Journal of Atmospheric and Oceanic Technology, 22, 1676–1690. https://doi.org/10.1175/JTECH1797.1.

    Article  Google Scholar 

  • Tanelli, S., Durden, S. L., Im, E., Pak, K., Reinke, D. G., Partain, P., Haynes, J. M., & Marchand, R. T. (2008). Cloudsat’s cloud profiling radar after 2 years in orbit: Performance, calibration and processing. IEEE Transactions on Geoscience and Remote Sensing, 46, 3560–3573. https://doi.org/10.1109/TGRS.2008.2002030.

    Article  Google Scholar 

  • Tanelli, S., Durden, S. L., & Johnson, M. P. (2016). Airborne demonstration of DPCA for velocity measurements of distributed targets. IEEE Geoscience and Remote Sensing Letters, 13, 1415–1419. https://doi.org/10.1109/LGRS.2016.2581174.

    Article  Google Scholar 

  • Tanelli, S., Haddad, Z. S., Im, E., Durden, S. L., Sy, O. O., Sadowy, G. A., & Sanchez-Barbetty, M. (2018). Radar concepts for the next generation of spacebome observations of cloud and precipitation processes. IEEE Radar Conference (RadarConf18), Oklahoma City, OK, 1245–1249.

    Google Scholar 

  • Tanner, A. B., Wilson, W. J., Lambrigsten, B. H., Dinardo, S. J., Brown, S. T., Kangaslahti, P. P., Gaier, T. C., Ruf, C. S., Gross, S. M., Lim, B. H., Musko, S. B., Rogacki, S. A., & Piepmeier, J. R. (2007). Initial results of the Geostationary Synthetic Thinned Array Radiometer (GeoSTAR) demonstrator instrument. IEEE Transactions on Geoscience and Remote Sensing, 45, 1947–1957. https://doi.org/10.1109/TGRS.2007.894060.

    Article  Google Scholar 

  • Tapiador, F. J., Navarro, A., Levizzani, V., García-Ortega, E., Huffman, G. J., Kidd, C., Kucera, P. A., Kummerow, C. D., Masunaga, H., Petersen, W. A., Roca, R., Sánchez, J.-L., Tao, W.-K., & Turk, F. J. (2017). Global precipitation measurements for validating climate models. Atmospheric Research, 197, 1–20. https://doi.org/10.1016/j.atmosres.2017.06.021.

    Article  Google Scholar 

  • Tapiador, F. J., Roca, R., Del Genio, A., Dewitte, B., Petersen, W., & Zhang, F. (2019). Is precipitation a good metrics for model performance? Bulletin of the American Meteorological Society, 100, 223–233. https://doi.org/10.1175/BAMS-D-17-0218.1.

    Article  Google Scholar 

  • Trenberth, K. E., & Zhang, Y. (2018). How often does it rain? Bulletin of the American Meteorological Society, 99, 289–298. https://doi.org/10.1175/BAMS-D-17-0107.1.

    Article  Google Scholar 

  • Trenberth, K. E., Dai, A., Rasmussen, R. M., & Parsons, D. B. (2003). The changing character of precipitation. Bulletin of the American Meteorological Society, 84, 1205–1218. https://doi.org/10.1175/BAMS-84-9-1205.

    Article  Google Scholar 

  • Weatherhead, E. C., Wielicki, B. A., Ramaswamy, V., Abbott, M., Ackerman, T. P., Atlas, R., Brasseur, G., Bruhwiler, L., Busalacchi, A. J., Butler, J. H., Clack, C. T. M., Cooke, R., Cucurull, L., Davis, S. M., English, J. M., Fahey, D. W., Fine, S. S., Lazo, J. K., Liang, S., Loeb, N. G., Rignot, E., Soden, B., Stanitski, D., Stephens, G., Tapley, B. D., Thompson, A. M., Trenberth, K. E., & Wuebbles, D. (2017). Designing the climate observing system of the future. Earth’s Future, 6, 80–102. https://doi.org/10.1002/2017EF000627.

    Article  Google Scholar 

  • Wood, D., & Stober K. J. (2018). Small satellites contribute to the United Nation’s sustainable development goals. Proceedings of 32nd Annual AIAA/USU Conference on Small Satellites, Logan UT, 4-9 Aug., SSC18-WKVIII-08. [Available at https://digitalcommons.usu.edu/smallsat/2018/all2018/437/. Last accessed 19 Mar 2019]

  • Wulder, M. A., & Coops, N. C. (2014). Satellites: Make Earth observations open access. Nature, 513, 30–31. https://doi.org/10.1038/513030a.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian D. Kummerow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kummerow, C.D., Tanelli, S., Takahashi, N., Furukawa, K., Klein, M., Levizzani, V. (2020). Plans for Future Missions. In: Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J. (eds) Satellite Precipitation Measurement. Advances in Global Change Research, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-24568-9_6

Download citation

Publish with us

Policies and ethics