3D Computer-Aided Design and Manufacturing in Oromaxillofacial Surgery

  • Risto KontioEmail author
  • Riitta Seppänen-Kaijansinkko


As imaging possibilities of tumour patients have improved, instead of secondary reconstruction, immediate reconstruction has gradually become state of the art in oromaxillofacial surgery.

By using digital 3D technology, surgeon can produce solid patient-specific implants or scaffolds (PSI). Computer-aided design and manufacturing can be carried out in a few days. 3D CAD–CAM technology offers multiple tools for reconstructive procedures: simulation, planning, training and production of patient-specific scaffolds, onlay implants as well as fixation plates. This technique is beneficial in patient education as well.

Materials that can be used in 3D CAD–CAM are different for example titanium and different biomaterials. It can also be carried out with cells. This is called bioprinting.

In this chapter, we will elaborate the background of 3D CAD–CAM, its use in experimental and clinical work, not forgetting the future insights.


Surgical planning 3D design and solid scaffold production Bioprinting 


  1. 1.
    Kroll SS, Marchi M. Immediate reconstruction: current status in cancer management. Tex Med. 1991;87:67–72.PubMedGoogle Scholar
  2. 2.
    Cohen M, Schoultz RC. Mandibular reconstruction. Symposium on head and neck surgery. Clin Plast Surg. 1985;12:411–22.PubMedGoogle Scholar
  3. 3.
    McQuarrie DG. Oral cancer. In: McQuarrie DG, Adams GL, Shons AR, Brown GA, editors. Head and neck cancer. clinical decisions and management principles. Chicago: Year Book Medical Publishers Inc.; 1986.Google Scholar
  4. 4.
    Masia J, Kosutic D, Clavero JA, et al. Preoperative computed tomographic angiogram for deep inferior epigastric artery perforator flap breast reconstruction. J Reconstr Microsurg. 2010;26:21–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Lee J, Sung HM, Jang JD, et al. Successful reconstruction of 15-cm segmental defects by bone marrow stem cells and resected autogenous bone graft in central hemangioma. J Oral Maxillofac Surg. 2010;68:188–94.PubMedCrossRefGoogle Scholar
  6. 6.
    Stoor P, Suomalainen A, Lindqvist C, et al. Rapid prototyped patient specific implants for reconstruction of orbital wall defects. J Craniomaxillofac Surg. 2014;42(8):1644–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Chenard KE, Teven CM, He TC, et al. Bone morphogenetic proteins in craniofacial surgery: current techniques, clinical experiences, and the future of personalized stem cell therapy. J Biomed Biotechnol. 2012;2012:601549.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Herford AS, Boyne PJ. Reconstruction of mandibular continuity defects with bone morphogenetic protein-2 (rhBMP-2). J Oral Maxillofac Surg. 2008;66:616–24.PubMedCrossRefGoogle Scholar
  9. 9.
    Zétola A, Ferreira FM, Larson R, et al. Recombinant human bone morphogenetic protein-2 (rhBMP-2) in the treatment of mandibular sequelae after tumor resection. Oral Maxillofac Surg. 2011;15:169–74.PubMedCrossRefGoogle Scholar
  10. 10.
    Hart KL, Bowles D. Reconstruction of alveolar defects using titanium-reinforced porous polyethylene as a containment device for recombinant human bone morphogenetic protein 2. J Oral Maxillofac Surg. 2012;70:811–20.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Desai SC, Sclaroff A, Nussenbaum B. Use of recombinant human bone morphogenetic protein 2 for mandible reconstruction. JAMA Facial Plast Surg. 2013;15:204–9.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Abukawa H, Zhang W, Young CS, et al. Reconstructing mandibular defects using autologous tissue-engineered tooth and bone constructs. J Oral Maxillofac Surg. 2009;67:335–47.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Grayson WL, Fröhlich M, Yeager K, et al. Engineering anatomically shaped human bone grafts. Proc Natl Acad Sci U S A. 2010;107:3299–304.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Sándor GK, Tuovinen VJ, Wolff J, et al. Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration. J Oral Maxillofac Surg. 2013;71:938–50.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Sándor GK, Numminen J, Wolff J, et al. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med. 2014;3(4):530–40.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    D’Aquino R, De Rosa A, Lanza V, et al. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater. 2009;18:75–83.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Fiegel HC, Lange C, Kneser U, et al. Fetal and adult liver stem cells for liver regeneration and tissue engineering. J Cell Mol Med. 2006;10:577–87.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Mesimäki K, Lindroos B, Törnwall J, et al. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg. 2009;38:201–9.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Schön R, Metzger MC, Zizelmann C, et al. Individually preformed titanium mesh implants for a true-to-original repair of orbital fractures. Int J Oral Maxillofac Surg. 2006;35(11):990–5.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Mustafa SF, Evans PL, Bocca A, et al. Customized titanium reconstruction of post-traumatic orbital wall defects: a review of 22 cases. Int J Oral Maxillofac Surg. 2011;40(12):1357–6132.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Stoetzer M, Rana M, von See C, et al. Reconstruction of defects of maxillary sinus wall after removal of a huge odontogenic lesion using prebended 3D titanium-mesh and CAD/CAM technique. Head Face Med. 2011;9(7):21.CrossRefGoogle Scholar
  22. 22.
    Probst FA, Mast G, Ermer M, et al. Matrix MANDIBLE preformed reconstruction plates—a two-year two-institution experience in 71 patients. J Oral Maxillofac Surg. 2012;70(11):657–66.CrossRefGoogle Scholar
  23. 23.
    Hassfeld S, Mühling J. Computer assisted oral and maxillofacial surgery—a review and an assessment of technology. Int J Oral Maxillofac Surg. 2001;30(1):2–13.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Gellrich NC, Schramm A, Hammer B, et al. Computer-assisted secondary reconstruction of unilateral posttraumatic orbital deformity. Plast Reconstr Surg. 2002;110(6):1417–29.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Matros E, Albornoz CR, Rensberger M, et al. Computer-assisted design and computer-assisted modeling technique optimization and advantages over traditional methods of osseous flap reconstruction. Reconstr Microsurg. 2014;30(5):289–96.Google Scholar
  26. 26.
    Hou JS, Chen M, Pan CB, et al. Application of CAD/CAM-assisted technique with surgical treatment in reconstruction of the mandible. J Craniomaxillofac Surg. 2012;40(8):432–7.CrossRefGoogle Scholar
  27. 27.
    Wurm G, Tomancok B, Pogady P, et al. Cerebrovascular stereolithographic biomodeling for aneurysm surgery. J Neurosurg. 2004;100(1):139–45.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Ciocca L, Mazzoni S, Fantini M, et al. CAD/CAM guided secondary mandibular reconstruction of a discontinuity defect after ablative cancer surgery. J Craniomaxillofac Surg. 2012;40:511–e515.CrossRefGoogle Scholar
  29. 29.
    Logan H, Wolfaardt J, Boulanger P, et al. Exploratory benchtop study evaluating the use of surgical design and simulation in fibula free flap mandibular reconstruction. J Otolaryngol Head Neck Surg. 2013;24(42):42.CrossRefGoogle Scholar
  30. 30.
    Wang L, Chen KC, Shi F, et al. Automated segmentation of CBCT image using spiral CT atlases and convex optimization. Med Image Comput Assist Interv. 2013;16(Pt 3):251–8.Google Scholar
  31. 31.
    Huotilainen E, Paloheimo M, Salmi M, et al. Imaging requirements for medical applications of additive manufacturing. Acta Radiol. 2014;55(1):78–85.PubMedCrossRefGoogle Scholar
  32. 32.
    Salmi M, Paloheimo KS, Tuomi J, et al. Accuracy of medical models made by additive manufacturing (rapid manufacturing). J Craniomaxillofac Surg. 2013;41(7):603–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Schievano S, Sebire NJ, Robertson NJ, et al. Reconstruction of fetal and infant anatomy using rapid prototyping of post-mortem MR images. Insights Imaging. 2010;1(4):281–6.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Izatt MT, Thorpe PLPJ, Thompson RG, et al. The use of physical biomodelling in complex spinal surgery. Eur Spine J. 2007;16(9):1507–18.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Modabber A, Legros C, Rana M, et al. Evaluation of computer-assisted jaw reconstruction with free vascularized fibular flap compared to conventional surgery: a clinical pilot study. Int J Med Robot. 2012;8(2):215–20.PubMedCrossRefGoogle Scholar
  36. 36.
    Han SW, Wang ZY, Hu QG, et al. Combined use of an anterolateral thigh flap and rapid prototype modeling to reconstruct maxillary oncologic resections and midface defects. J Craniomaxillofac Surg. 2014;25(4):1147–9.Google Scholar
  37. 37.
    Lo LJ, Chen YR, Tseng CS, et al. Computer-aided reconstruction of traumatic fronto-orbital osseous defects: aesthetic considerations. Chang Gung Med J. 2004;27(4):283–91.PubMedGoogle Scholar
  38. 38.
    Sieira GR, Mari RA, Arranz OC, et al. Surgical planning and microvascular reconstruction of the mandible with a fibular flap using computer-aided design, rapid prototype modelling, and precontoured titanium reconstruction plates: a prospective study. Br J Oral Maxillofac Surg. 2015;53(1):49–53.CrossRefGoogle Scholar
  39. 39.
    Zhang YZ, Chen B, Lu S, et al. Preliminary application of computer-assisted patient-specific acetabular navigational template for total hip arthroplasty in adult single development dysplasia of the hip. Int J Med Robot. 2011;7(4):469–74.PubMedCrossRefGoogle Scholar
  40. 40.
    Hanasono MM, Skoracki RJ. Computer-assisted design and rapid prototype modeling in microvascular mandible reconstruction. Laryngoscope. 2013;123(3):597–604.PubMedCrossRefGoogle Scholar
  41. 41.
    Ciocca L, Donati D, Fantini M, et al. CAD–CAM-generated hydroxyapatite scaffold to replace the mandibular condyle in sheep: preliminary results. J Biomater Appl. 2013;28:207–18.PubMedCrossRefGoogle Scholar
  42. 42.
    Foley BD, Thayer WP, Honeybrook A, et al. Mandibular reconstruction using computer-aided design and computer-aided manufacturing: an analysis of surgical results. J Oral Maxillofac Surg. 2013;71(2):111–9.CrossRefGoogle Scholar
  43. 43.
    Cha JK, Park JC, Jung UW, et al. Case series of maxillary sinus augmentation with biphasic calcium phosphate: a clinical and radiographic study. J Periodontal Implant Sci. 2011;41(2):98–104.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Lindgren C, Mordenfeld A, Hallman M, et al. A prospective 1-year clinical and radiographic study of implants placed after maxillary sinus floor augmentation with synthetic biphasic calcium phosphate or deproteinized bovine bone. Clin Implant Dent Relat Res. 2012;14(1):41–50.PubMedCrossRefGoogle Scholar
  45. 45.
    Pandit N, Gupta R, Gupta S. A comparative evaluation of biphasic calcium phosphate material and bioglass in the treatment of periodontal osseous defects: a clinical and radiological study. J Contemp Dent Pract. 2010;11(2):25–32.CrossRefGoogle Scholar
  46. 46.
    Piitulainen JM, Kauko T, Aitasalo KM, et al. Outcomes of cranioplasty with synthetic materials and autologous bone grafts. World Neurosurg. 2015;83(5):708–14.PubMedCrossRefGoogle Scholar
  47. 47.
    Ioannou AL, Kotsakis GA, Kumar T, et al. Evaluation of the bone regeneration potential of bioactive glass in implant site development surgeries: a systematic review of the literature. Clin Oral Investig. 2015;19(2):181–91.PubMedCrossRefGoogle Scholar
  48. 48.
    Mironov V. The Second International Workshop on bioprinting, biopatterning and bioassembly. Expert Opin Biol Ther. 2005;5(8):1111–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Vacanti CA. The history of tissue engineering. J Cell Mol Med. 2006;10:569–76.PubMedCrossRefGoogle Scholar
  50. 50.
    Ingber DE. Mechanical control of tissue growth: function follows form. PNAS. 2005;102(33):11571–2.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Dowler C. Automatic model building cuts design time, costs. Plast Eng. 1989;45:43–5.Google Scholar
  52. 52.
    Fisher JP, Dean D, Mikos AG, et al. Photo crosslinking characteristics and mechanical properties of diethyl fumarate/poly (propylene fumarate) biomaterials. Biomaterials. 2002;23:4333–43.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Melchels FP, Feijen J, Grijpma DW, et al. A poly (D, L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials. 2009;30:3801–9.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Chan V, Zorlutuna P, Jeong JH, et al. Three dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip. 2010;10:206–70.Google Scholar
  55. 55.
    Jakab K, Norotte C, Damon B, et al. Tissue engineering by selfassembly of cells printed into topologically defined structures. Tissue Eng A. 2008;14:413–21.CrossRefGoogle Scholar
  56. 56.
    Landers R, Hübner U, Schmelzeisen R, et al. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials. 2002;23:4437–47.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Seol YJ, Kang HW, Lee SJ, et al. Bioprinting technology and its applications. Eur J Cardiothorac Surg. 2014;46(3):342–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Ringeisen BR, Kim H, Barron JA, et al. Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng. 2004;10:483–91.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Hopp B, Smausz T, Kresz N, et al. Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng. 2005;11:1817–23.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Gruene M, Pflaum M, Hess C, et al. Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell environment interactions. Tissue Eng Part C Methods. 2011;17:973–82.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Boland T, Xu T, Damon B, et al. Application of inkjet printing to tissue engineering. Biotechnol J. 2006;1(9):910–7.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Xu T, Gregory CA, Molnar P, et al. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials. 2006;27:3580–8.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials. 2009;30:6221–7.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Parzel CA, Pepper ME, Burg T, et al. EDTA enhances high-throughput two-dimensional bioprinting by inhibiting salt scaling and cell aggregation at the nozzle surface. J Tissue Eng Regen Med. 2009;3(4):260–8.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Mironov V, Kasyanov V, Markwald RR. Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication. Trends Biotechnol. 2008;26(6):338–44.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Buyukhatipoglu K, Chang R, Sun W, et al. Bioprinted nanoparticles for tissue engineering applications. Tissue Eng Part C Methods. 2010;16(4):631–42.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Konig G, McAllister TN, Dusserre N, et al. Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials. 2009;30(8):1542–50.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Mandrycky C, Wang Z, Kim K, et al. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34(4):422–34.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Naito H, Dohi Y, Zimmermann WH, et al. The effect of mesenchymal stem cell osteoblastic differentiation on the mechanical properties of engineered bone-like tissue. Tissue Eng A. 2011;17:2321–9.CrossRefGoogle Scholar
  70. 70.
    He Y, Yang F, Zhao H, et al. Research of the printability of hydrogels in 3D bioprinting. Sci Rep. 2016;20(6):29977.CrossRefGoogle Scholar
  71. 71.
    Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9:4.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Lee MH, Arcidiacono JA, Bilek AM, et al. Considerations for tissue-engineered and regenerative medicine product development prior to clinical trials in the United States. Tissue Eng Part B Rev. 2010;16(1):41–54.PubMedCrossRefGoogle Scholar
  73. 73.
    Warnke PH, Springer IN, Acil Y, et al. The mechanical integrity of in vivo engineered heterotopic bone. Biomaterials. 2006;27(7):1081–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Yamada Y, Ito K, Nakamura S, et al. Promising cell-based therapy for bone regeneration using stem cells from deciduous teeth, dental pulp, and bone marrow. Cell Transplant. 2011;20:1003–13.PubMedCrossRefGoogle Scholar
  75. 75.
    Xu H, Han D, Dong JS, et al. Rapid prototyped PGA/PLA scaffolds in the reconstruction of mandibular condyle bone defects. Int J Med Robot. 2010;6:66–72.PubMedCrossRefGoogle Scholar
  76. 76.
    Warnke PH, Springer IN, Acil Y, et al. The mechanical integrity of in vivo engineered heterotopic bone. Biomaterials 2006. 2006;27(7):1081–7.Google Scholar
  77. 77.
    Bibb R, Thompson D, Winder J, et al. Computed tomography characterisation of additive manufacturing materials. Med Eng Phys. 2011;33(5):590–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Hassfeld S, Mühling J, Zöller J. Intraoperative navigation in oral and maxillofacial surgery. Int J Oral Maxillofac Surg. 1995;24:111–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Niemelä SM, Miettinen S, Konttinen Y, et al. Fat tissue: views on reconstruction and exploitation. J Craniofac Surg. 2007;18:325–235.PubMedCrossRefGoogle Scholar
  80. 80.
    Huang JI, Zuk PA, Jones NF, et al. Chondrogenic potential of multipotential cells from human adipose tissue. Plast Reconstr Surg. 2004;113:585–94.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Li J, Hsu Y, Luo E, et al. Computer-aided design and manufacturing and rapid prototyped nanoscale hydroxyapatite/polyamide (n-HA/PA) construction for condylar defect caused by mandibular angle ostectomy. Aesthetic Plast Surg. 2011;35(4):636–40.PubMedCrossRefGoogle Scholar
  82. 82.
    Warnke PH, Springer IN, Wiltfang J, et al. Growth and transplantation of a custom vascularised bone graft in a man. Lancet. 2004;364(9436):766–70.PubMedCrossRefGoogle Scholar
  83. 83.
    Matsuo A, Chiba H, Takahashi H, et al. Clinical application of a custom-made bioresorbable raw particulate hydroxyapatite/poly-L-lactide mesh tray for mandibular reconstruction. Odontology. 2010;98(1):85–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Oral and Maxillofacial DiseasesUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland

Personalised recommendations