Advertisement

Biomaterials for Cranio-Maxillofacial Bone Engineering

  • Giuseppe Maria de Peppo
  • Omar Omar
  • Peter ThomsenEmail author
Chapter

Abstract

The regeneration of bone, particularly in large defects, is one of the major challenges within the cranio-maxillofacial field. This chapter provides a summary of key components required for the restitution of defects with bone. Biomaterials play a fundamental role in bone engineering and regeneration because they provide conductive and inductive cues supporting cell proliferation and tissue formation. Metals, ceramics, polymers, composites, and natural materials constitute the major types of scaffolds. Herein, the biological response to different scaffold materials is reviewed. Furthermore, the clinical evidence from human trials is summarized. Although promising results have been generated in vitro and in preclinical animal models, so far only few materials have entered the clinical phase. The future perspective of this field of research deals with the successful merger of critical technical and biological aspects. The translational process, reaching the clinical stage, requires true interdisciplinary efforts and is usually much longer than anticipated.

Keywords

Bone defects Bone graft Bone regeneration Cell–material interactions Ceramic Composite Cranio-maxillofacial Metal Polymer Scaffold 

Notes

Acknowledgments

The authors thank all co-workers for their valuable collaboration in experimental and clinical research projects. The authors also thank and acknowledge the research grant providers: The New York Stem Cell Foundation Research Institute, The Ralph and Ricky Lauren Family Foundation, the Swedish Research Council (K2015-52X-09495-28-4), the Swedish state under the agreement between the Swedish government and the county councils, the ALF agreement (ALFGBG-725641), the Osteology Foundation (project grants 15-103 and 17-235), the IngaBritt and Arne Lundberg Foundation, the Hjalmar Svensson Foundation, the Adlerbertska Foundation, the Vilhelm and Martina Lundgren Vetenskapsfond, and the Area of Advance Materials of Chalmers and GU Biomaterials within the Strategic Research Area initiative launched by the Swedish government.

References

  1. 1.
    Braddock M, Houston P, Campbell C, Ashcroft P. Born again bone: tissue engineering for bone repair. News Physiol Sci. 2001;16:208–13.PubMedGoogle Scholar
  2. 2.
    Biswas G, Khandelwal NK, Venkatramu NK, Chari PS. Congenital sternal cleft. Br J Plast Surg. 2001;54(3):259–61.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Jaffe KA, Morris SG, Sorrell RG, Gebhardt MC, Mankin HJ. Massive bone allografts for traumatic skeletal defects. South Med J. 1991;84(8):975–82.PubMedCrossRefGoogle Scholar
  4. 4.
    Mehrara BJ, Disa JJ, Pusic A. Scalp reconstruction. J Surg Oncol. 2006;94(6):504–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Jia WT, Zhang CQ, Sheng JG, Jin DX, Cheng XG, Chen SB, Zeng BF. Free vascularized fibular grafting in combination with a locking plate for the reconstruction of a large tibial defect secondary to osteomyelitis in a child: a case report and literature review. J Pediatr Orthop B. 2010;19(1):66–70.PubMedCrossRefGoogle Scholar
  6. 6.
    Banwart JC, Asher MA, Hassanein RS. Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine. 1995;20(9):1055–60.PubMedCrossRefGoogle Scholar
  7. 7.
    Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am. 2002;84(3):454–64.PubMedCrossRefGoogle Scholar
  8. 8.
    Delloye C. Tissue allografts and health risks. Acta Orthop Belg. 1994;60(Suppl 1):62–7.PubMedGoogle Scholar
  9. 9.
    Hing KA. Bone repair in the twenty-first century: biology, chemistry or engineering? Philos Trans A Math Phys Eng Sci. 2004;362(1825):2821–50.PubMedCrossRefGoogle Scholar
  10. 10.
    Mankani N, Chowdhary R, Patil BA, Nagaraj E, Madalli P. Osseointegrated dental implants in growing children: a literature review. J Oral Implantol. 2014;40(5):627–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Langer R, Vacanti JP. Tissue engineering. Science (New York, NY). 1993;260(5110):920.CrossRefGoogle Scholar
  12. 12.
    de Peppo GM, Marolt D. Make no bones about it: cells could soon be reprogrammed to grow replacement bones? Expert Opin Biol Ther. 2014;14(1):1–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Blitterswijk C. Tissue engineering. 1st ed. London: Elsevier Academic Press; 2008.Google Scholar
  14. 14.
    Lanza R, Langer R, Vacanti J. Principles of tissue engineering. 3rd ed. London: Elsevier Academi Press; 2007.Google Scholar
  15. 15.
    Sladkova M, de Peppo MG. Bioreactor systems for human bone tissue engineering. Processes. 2014;2(2):494–525.CrossRefGoogle Scholar
  16. 16.
    Prasadh S, Wong RCW. Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects. Oral Sci Int. 2018;15(2):48–55.CrossRefGoogle Scholar
  17. 17.
    Sengupta D, Waldman SD, Li S. From in vitro to in situ tissue engineering. Ann Biomed Eng. 2014;42(7):1537–45.PubMedCrossRefGoogle Scholar
  18. 18.
    Stevens MM, Marini RP, Schaefer D, Aronson J, Langer R, Shastri VP. In vivo engineering of organs: the bone bioreactor. Proc Natl Acad Sci U S A. 2005;102(32):11450–5.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Seeley R, Stephens T, Tate P. Anatomy & physiology. New York: McGraw-Hill; 2006.Google Scholar
  20. 20.
    Turner CH. Bone strength: current concepts. Ann N Y Acad Sci. 2006;1068:429–46.PubMedCrossRefGoogle Scholar
  21. 21.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science (New York, NY). 1999;284(5411):143–7.CrossRefGoogle Scholar
  22. 22.
    Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science (New York, NY). 1997;276(5309):71–4.CrossRefGoogle Scholar
  23. 23.
    Blair HC, Larrouture QC, Li Y, Lin H, Beer-Stoltz D, Liu L, Tuan RS, Robinson LJ, Schlesinger PH, Nelson DJ. Osteoblast differentiation and bone matrix formation in vivo and in vitro. Tissue Eng Part B Rev. 2017;23(3):268–80.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Buenzli PR, Sims NA. Quantifying the osteocyte network in the human skeleton. Bone. 2015;75:144–50.PubMedCrossRefGoogle Scholar
  25. 25.
    Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38.PubMedCrossRefGoogle Scholar
  26. 26.
    Shah FA, Thomsen P, Palmquist A. A review of the impact of implant biomaterials on osteocytes. J Dent Res. 2018;97(9):977–86.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Vaananen HK, Zhao H, Mulari M, Halleen JM. The cell biology of osteoclast function. J Cell Sci. 2000;113(Pt 3):377–81.PubMedGoogle Scholar
  28. 28.
    Bar-Shavit Z. The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J Cell Biochem. 2007;102(5):1130–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Proff P, Romer P. The molecular mechanism behind bone remodelling: a review. Clin Oral Investig. 2009;13(4):355–62.PubMedCrossRefGoogle Scholar
  30. 30.
    Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol. 2011;13(1):27–38.PubMedCrossRefGoogle Scholar
  31. 31.
    Meijer GJ, de Bruijn JD, Koole R, van Blitterswijk CA. Cell-based bone tissue engineering. PLoS Med. 2007;4(2):e9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Vunjak-Novakovic G, Radisic M. Cell seeding of polymer scaffolds. In: Hollander A, Hatton P, editors. Biopolymer methods in tissue engineering: Humana Press, eBook; 2004. p. 357–66.Google Scholar
  33. 33.
    Yeatts AB, Fisher JP. Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress. Bone. 2011;48(2):171–81.PubMedCrossRefGoogle Scholar
  34. 34.
    Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S. Mechanosensation and transduction in osteocytes. Bone. 2013;54(2):182–90.PubMedCrossRefGoogle Scholar
  35. 35.
    McCoy RJ, O’Brien FJ. Influence of shear stress in perfusion bioreactor cultures for the development of three-dimensional bone tissue constructs: a review. Tissue Eng Part B Rev. 2010;16(6):587–601.PubMedCrossRefGoogle Scholar
  36. 36.
    Mareschi K, Ferrero I, Rustichelli D, Aschero S, Gammaitoni L, Aglietta M, Madon E, Fagioli F. Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J Cell Biochem. 2006;97(4):744–54.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, Leboff MS, Glowacki J. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell. 2008;7(3):335–43.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Karlsson C, Emanuelsson K, Wessberg F, Kajic K, Axell MZ, Eriksson PS, Lindahl A, Hyllner J, Strehl R. Human embryonic stem cell-derived mesenchymal progenitors—potential in regenerative medicine. Stem Cell Res. 2009;3(1):39–50.PubMedCrossRefGoogle Scholar
  39. 39.
    de Peppo GM, Svensson S, Lenneras M, Synnergren J, Stenberg J, Strehl R, Hyllner J, Thomsen P, Karlsson C. Human embryonic mesodermal progenitors highly resemble human mesenchymal stem cells and display high potential for tissue engineering applications. Tissue Eng Part A. 2010;16(7):2161–82.PubMedCrossRefGoogle Scholar
  40. 40.
    Villa-Diaz LG, Brown SE, Liu Y, Ross AM, Lahann J, Parent JM, Krebsbach PH. Derivation of mesenchymal stem cells from human induced pluripotent stem cells cultured on synthetic substrates. Stem Cells (Dayton, OH). 2012;30(6):1174–81.CrossRefGoogle Scholar
  41. 41.
    Bilousova G, Jun du H, King KB, De Langhe S, Chick WS, Torchia EC, Chow KS, Klemm DJ, Roop DR, Majka SM. Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells (Dayton, OH). 2011;29(2):206–16.CrossRefGoogle Scholar
  42. 42.
    de Peppo GM, Sladkova M, Sjovall P, Palmquist A, Oudina K, Hyllner J, Thomsen P, Petite H, Karlsson C. Human embryonic stem cell-derived mesodermal progenitors display substantially increased tissue formation compared to human mesenchymal stem cells under dynamic culture conditions in a packed bed/column bioreactor. Tissue Eng Part A. 2013;19(1–2):175–87.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Marolt D, Campos IM, Bhumiratana S, Koren A, Petridis P, Zhang G, Spitalnik PF, Grayson WL, Vunjak-Novakovic G. Engineering bone tissue from human embryonic stem cells. Proc Natl Acad Sci U S A. 2012;109(22):8705–9.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    de Peppo GM, Marcos-Campos I, Kahler DJ, Alsalman D, Shang L, Vunjak-Novakovic G, Marolt D. Engineering bone tissue substitutes from human induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2013;110(21):8680–5.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Grayson WL, Frohlich M, Yeager K, Bhumiratana S, Chan ME, Cannizzaro C, Wan LQ, Liu XS, Guo XE, Vunjak-Novakovic G. Engineering anatomically shaped human bone grafts. Proc Natl Acad Sci U S A. 2010;107(8):3299–304.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Bhumiratana S, Bernhard JC, Alfi DM, Yeager K, Eton RE, Bova J, Shah F, Gimble JM, Lopez MJ, Eisig SB, Vunjak-Novakovic G. Tissue-engineered autologous grafts for facial bone reconstruction. Sci Transl Med. 2016;8(343):343ra83.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G. Tissue-engineered bone regeneration. Nat Biotechnol. 2000;18(9):959–63.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Chen M, Wang X, Ye Z, Zhang Y, Zhou Y, Tan WS. A modular approach to the engineering of a centimeter-sized bone tissue construct with human amniotic mesenchymal stem cells-laden microcarriers. Biomaterials. 2011;32(30):7532–42.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Sladkova M, Alawadhi R, Jaragh Alhaddad R, Esmael A, Alansari S, Saad M, Mulla Yousef J, Alqaoud L, de Peppo GM. Segmental additive tissue engineering. Sci Rep. 2018;8(1):10895.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Fearon JA, Griner D, Ditthakasem K, Herbert M. Autogenous bone reconstruction of large secondary skull defects. Plast Reconstr Surg. 2017;139(2):427–38.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Tolman DE. Advanced residual ridge resorption: surgical management. Int J Prosthodont. 1993;6(2):118–25.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Aghaloo TL, Moy PK. Which hard tissue augmentation techniques are the most successful in furnishing bony support for implant placement? Int J Oral Maxillofac Implants. 2007;22(Suppl):49–70.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Corliss B, Gooldy T, Vaziri S, Kubilis P, Murad G, Fargen K. Complications after in vivo and ex vivo autologous bone flap storage for cranioplasty: a comparative analysis of the literature. World Neurosurg. 2016;96:510–5.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Fan MC, Wang QL, Sun P, Zhan SH, Guo P, Deng WS, Dong Q. Cryopreservation of autologous cranial bone flaps for cranioplasty: a large sample retrospective study. World Neurosurg. 2018;109:e853–9.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Li A, Azad TD, Veeravagu A, Bhatti I, Long C, Ratliff JK, Li G. Cranioplasty complications and costs: a national population-level analysis using the marketscan longitudinal database. World Neurosurg. 2017;102:209–20.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Coulter IC, Pesic-Smith JD, Cato-Addison WB, Khan SA, Thompson D, Jenkins AJ, Strachan RD, Mukerji N. Routine but risky: a multi-centre analysis of the outcomes of cranioplasty in the Northeast of England. Acta Neurochir. 2014;156(7):1361–8.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Neovius E, Engstrand T. Craniofacial reconstruction with bone and biomaterials: review over the last 11 years. J Plast Reconstr Aesthet Surg. 2010;63(10):1615–23.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Fishman JA, Greenwald MA, Grossi PA. Transmission of infection with human allografts: essential considerations in donor screening. Clin Infect Dis. 2012;55(5):720–7.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Cozzi E, Bosio E, Seveso M, Vadori M, Ancona E. Xenotransplantation-current status and future perspectives. Br Med Bull. 2005;75–76:99–114.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Hikita A, Chung UI, Hoshi K, Takato T. Bone regenerative medicine in oral and maxillofacial region using a three-dimensional printer<sup/>. Tissue Eng Part A. 2017;23(11–12):515–21.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Khojasteh A, Kheiri L, Motamedian SR, Khoshkam V. Guided bone regeneration for the reconstruction of alveolar bone defects. Ann Maxillofac Surg. 2017;7(2):263–77.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Benic GI, Hammerle CH. Horizontal bone augmentation by means of guided bone regeneration. Periodontology 2000. 2014;66(1):13–40.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Bunyaratavej P, Wang HL. Collagen membranes: a review. J Periodontol. 2001;72(2):215–29.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Dahlin C, Linde A, Gottlow J, Nyman S. Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg. 1988;81(5):672–6.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Hammerle CH, Jung RE. Bone augmentation by means of barrier membranes. Periodontology. 2003;2000(33):36–53.CrossRefGoogle Scholar
  66. 66.
    Retzepi M, Donos N. Guided bone regeneration: biological principle and therapeutic applications. Clin Oral Implants Res. 2010;21(6):567–76.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Dahlin C, Sennerby L, Lekholm U, Linde A, Nyman S. Generation of new bone around titanium implants using a membrane technique: an experimental study in rabbits. Int J Oral Maxillofac Implants. 1989;4(1):19–25.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci. 2017;125(5):315–37.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Turri A, Elgali I, Vazirisani F, Johansson A, Emanuelsson L, Dahlin C, Thomsen P, Omar O. Guided bone regeneration is promoted by the molecular events in the membrane compartment. Biomaterials. 2016;84:167–83.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Omar O, Elgali I, Dahlin C, Thomsen P. Barrier membranes: more than the barrier effect? J Clin Periodontol. 2019;46(Suppl 21):103–23.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Shim J-H, Yoon M-C, Jeong C-M, Jang J, Jeong S-I, Cho D-W, Huh J-B. Efficacy of rhBMP-2 loaded PCL/PLGA/β-TCP guided bone regeneration membrane fabricated by 3D printing technology for reconstruction of calvaria defects in rabbit. Biomed Mater. 2014;9(6):065006.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Hong KS, Kim EC, Bang SH, Chung CH, Lee YI, Hyun JK, Lee HH, Jang JH, Kim TI, Kim HW. Bone regeneration by bioactive hybrid membrane containing FGF2 within rat calvarium. J Biomed Mater Res A. 2010;94(4):1187–94.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Park YJ, Ku Y, Chung CP, Lee SJ. Controlled release of platelet-derived growth factor from porous poly (L-lactide) membranes for guided tissue regeneration. J Control Release. 1998;51(2):201–11.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Lee YJ, Lee JH, Cho HJ, Kim HK, Yoon TR, Shin H. Electrospun fibers immobilized with bone forming peptide-1 derived from BMP7 for guided bone regeneration. Biomaterials. 2013;34(21):5059–69.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Mao JJ, Giannobile WV, Helms JA, Hollister SJ, Krebsbach PH, Longaker MT, Shi S. Craniofacial tissue engineering by stem cells. J Dent Res. 2006;85(11):966–79.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Mardas N, Dereka X, Donos N, Dard M. Experimental model for bone regeneration in oral and cranio-maxillo-facial surgery. J Invest Surg. 2014;27(1):32–49.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Jhaveri-Desai H, Khetarpal S. Tissue engineering in regenerative dental therapy. J Healthcare Eng. 2011;2(4):405–26.CrossRefGoogle Scholar
  78. 78.
    Thesleff T, Lehtimaki K, Niskakangas T, Huovinen S, Mannerstrom B, Miettinen S, Seppanen-Kaijansinkko R, Ohman J. Cranioplasty with adipose-derived stem cells, beta-tricalcium phosphate granules and supporting mesh: six-year clinical follow-up results. Stem Cells Transl Med. 2017;6(7):1576–82.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Kohan E, Roostaeian J, Yuan JT, Fan KL, Federico C, Kawamoto H, Bradley JP. Customized bilaminar resorbable mesh with BMP-2 promotes cranial bone defect healing. Ann Plast Surg. 2015;74(5):603–8.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Schimming R, Schmelzeisen R. Tissue-engineered bone for maxillary sinus augmentation. J Oral Maxillofac Surg. 2004;62(6):724–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Beaumont C, Schmidt RJ, Tatakis DN, Zafiropoulos GG. Use of engineered bone for sinus augmentation. J Periodontol. 2008;79(3):541–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Misch CM. Bone augmentation of the atrophic posterior mandible for dental implants using rhBMP-2 and titanium mesh: clinical technique and early results. Int J Periodontics Restorative Dent. 2011;31(6):581–9.PubMedGoogle Scholar
  83. 83.
    Ribeiro Filho SA, Francischone CE, de Oliveira JC, Ribeiro LZ, do Prado FZ, Sotto-Maior BS. Bone augmentation of the atrophic anterior maxilla for dental implants using rhBMP-2 and titanium mesh: histological and tomographic analysis. Int J Oral Maxillofac Surg. 2015;44(12):1492–8.PubMedCrossRefGoogle Scholar
  84. 84.
    de Freitas RM, Susin C, Spin-Neto R, Marcantonio C, Wikesjo UM, Pereira LA, Marcantonio E Jr. Horizontal ridge augmentation of the atrophic anterior maxilla using rhBMP-2/ACS or autogenous bone grafts: a proof-of-concept randomized clinical trial. J Clin Periodontol. 2013;40(10):968–75.PubMedCrossRefGoogle Scholar
  85. 85.
    Nam JW, Khureltogtokh S, Choi HM, Lee AR, Park YB, Kim HJ. Randomised controlled clinical trial of augmentation of the alveolar ridge using recombinant human bone morphogenetic protein 2 with hydroxyapatite and bovine-derived xenografts: comparison of changes in volume. Br J Oral Maxillofac Surg. 2017;55(8):822–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Fiorellini JP, Howell TH, Cochran D, Malmquist J, Lilly LC, Spagnoli D, Toljanic J, Jones A, Nevins M. Randomized study evaluating recombinant human bone morphogenetic protein-2 for extraction socket augmentation. J Periodontol. 2005;76(4):605–13.PubMedCrossRefGoogle Scholar
  87. 87.
    Huh JB, Lee HJ, Jang JW, Kim MJ, Yun PY, Kim SH, Choi KH, Kim YK, Cho KS, Shin SW. Randomized clinical trial on the efficacy of Escherichia coli-derived rhBMP-2 with beta-TCP/HA in extraction socket. J Adv Prosthodont. 2011;3(3):161–5.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Boyne PJ, Lilly LC, Marx RE, Moy PK, Nevins M, Spagnoli DB, Triplett RG. De novo bone induction by recombinant human bone morphogenetic protein-2 (rhBMP-2) in maxillary sinus floor augmentation. J Oral Maxillofac Surg. 2005;63(12):1693–707.PubMedCrossRefGoogle Scholar
  89. 89.
    Triplett RG, Nevins M, Marx RE, Spagnoli DB, Oates TW, Moy PK, Boyne PJ. Pivotal, randomized, parallel evaluation of recombinant human bone morphogenetic protein-2/absorbable collagen sponge and autogenous bone graft for maxillary sinus floor augmentation. J Oral Maxillofac Surg. 2009;67(9):1947–60.PubMedCrossRefGoogle Scholar
  90. 90.
    Park J, Bronzino J. Biomaterials: principles and applications. Boca Raton: CRC Press; 2002.CrossRefGoogle Scholar
  91. 91.
    Karahaliloglu Z, Ercan B, Taylor EN, Chung S, Denkbas EB, Webster TJ. Antibacterial nanostructured polyhydroxybutyrate membranes for guided bone regeneration. J Biomed Nanotechnol. 2015;11(12):2253–63.PubMedCrossRefGoogle Scholar
  92. 92.
    Stevens MM, George JH. Exploring and engineering the cell surface interface. Science (New York, NY). 2005;310(5751):1135–8.CrossRefGoogle Scholar
  93. 93.
    Bierbaum S, Hintze V, Scharnweber D. Functionalization of biomaterial surfaces using artificial extracellular matrices. Biomatter. 2012;2(3):132–41.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Schliephake H, Scharnweber D, Dard M, Sewing A, Aref A, Roessler S. Functionalization of dental implant surfaces using adhesion molecules. J Biomed Mater Res B Appl Biomater. 2005;73(1):88–96.PubMedCrossRefGoogle Scholar
  95. 95.
    Moraschini V, Poubel LA, Ferreira VF, Barboza Edos S. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: a systematic review. Int J Oral Maxillofac Surg. 2015;44(3):377–88.PubMedCrossRefGoogle Scholar
  96. 96.
    Palmquist A, Omar OM, Esposito M, Lausmaa J, Thomsen P. Titanium oral implants: surface characteristics, interface biology and clinical outcome. J R Soc Interface. 2010;7(Suppl 5):S515–27.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Shah FA, Trobos M, Thomsen P, Palmquist A. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants—is one truly better than the other? Mater Sci Eng C Mater Biol Appl. 2016;62:960–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Cordeiro JM, Barao VAR. Is there scientific evidence favoring the substitution of commercially pure titanium with titanium alloys for the manufacture of dental implants? Mater Sci Eng C Mater Biol Appl. 2017;71:1201–15.PubMedCrossRefGoogle Scholar
  99. 99.
    Brunette D, Tengvall P, Textor M, Thomsen P. Titanium in medicine: material science, surface science, engineering, biological responses and medical applications. 1st ed. Berlin: Springer; 2001.CrossRefGoogle Scholar
  100. 100.
    Jovanovic SA, Schenk RK, Orsini M, Kenney EB. Supracrestal bone formation around dental implants: an experimental dog study. Int J Oral Maxillofac Implants. 1995;10(1):23–31.PubMedGoogle Scholar
  101. 101.
    Liu J, Kerns DG. Mechanisms of guided bone regeneration: a review. Open Dent J. 2014;8:56–65.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Lundgren AK, Sennerby L, Lundgren D. Guided jaw-bone regeneration using an experimental rabbit model. Int J Oral Maxillofac Surg. 1998;27(2):135–40.PubMedCrossRefGoogle Scholar
  103. 103.
    Sumi Y, Miyaishi O, Tohnai I, Ueda M. Alveolar ridge augmentation with titanium mesh and autogenous bone. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89(3):268–70.PubMedCrossRefGoogle Scholar
  104. 104.
    Jovanovic SA, Nevins M. Bone formation utilizing titanium-reinforced barrier membranes. Int J Periodontics Restorative Dent. 1995;15(1):56–69.PubMedGoogle Scholar
  105. 105.
    Malchiodi L, Scarano A, Quaranta M, Piattelli A. Rigid fixation by means of titanium mesh in edentulous ridge expansion for horizontal ridge augmentation in the maxilla. Int J Oral Maxillofac Implants. 1998;13(5):701–5.PubMedGoogle Scholar
  106. 106.
    Artzi Z, Dayan D, Alpern Y, Nemcovsky CE. Vertical ridge augmentation using xenogenic material supported by a configured titanium mesh: clinicohistopathologic and histochemical study. Int J Oral Maxillofac Implants. 2003;18(3):440–6.PubMedGoogle Scholar
  107. 107.
    von Arx T, Kurt B. Implant placement and simultaneous ridge augmentation using autogenous bone and a micro titanium mesh: a prospective clinical study with 20 implants. Clin Oral Implants Res. 1999;10(1):24–33.CrossRefGoogle Scholar
  108. 108.
    Ricci L, Perrotti V, Ravera L, Scarano A, Piattelli A, Iezzi G. Rehabilitation of deficient alveolar ridges using titanium grids before and simultaneously with implant placement: a systematic review. J Periodontol. 2013;84(9):1234–42.PubMedCrossRefGoogle Scholar
  109. 109.
    Stevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008;11(5):18–25.CrossRefGoogle Scholar
  110. 110.
    Friedman CD, Costantino PD, Takagi S, Chow LC. BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res. 1998;43(4):428–32.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Constantz BR, Ison IC, Fulmer MT, Poser RD, Smith ST, VanWagoner M, Ross J, Goldstein SA, Jupiter JB, Rosenthal DI. Skeletal repair by in situ formation of the mineral phase of bone. Science (New York, NY). 1995;267(5205):1796–9.CrossRefGoogle Scholar
  112. 112.
    Xu HH, Wang P, Wang L, Bao C, Chen Q, Weir MD, Chow LC, Zhao L, Zhou X, Reynolds MA. Calcium phosphate cements for bone engineering and their biological properties. Bone Res. 2017;5:17056.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Chow LC. Next generation calcium phosphate-based biomaterials. Dent Mater J. 2009;28(1):1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Yuan H, Fernandes H, Habibovic P, de Boer J, Barradas AM, de Ruiter A, Walsh WR, van Blitterswijk CA, de Bruijn JD. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci U S A. 2010;107(31):13614–9.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Weir MD, Xu HH. Culture human mesenchymal stem cells with calcium phosphate cement scaffolds for bone repair. J Biomed Mater Res B Appl Biomater. 2010;93(1):93–105.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Liu X, Wang P, Chen W, Weir MD, Bao C, Xu HH. Human embryonic stem cells and macroporous calcium phosphate construct for bone regeneration in cranial defects in rats. Acta Biomater. 2014;10(10):4484–93.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Yuasa T, Miyamoto Y, Ishikawa K, Takechi M, Momota Y, Tatehara S, Nagayama M. Effects of apatite cements on proliferation and differentiation of human osteoblasts in vitro. Biomaterials. 2004;25(7–8):1159–66.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Tang M, Chen W, Liu J, Weir MD, Cheng L, Xu HH. Human induced pluripotent stem cell-derived mesenchymal stem cell seeding on calcium phosphate scaffold for bone regeneration. Tissue Eng Part A. 2014;20(7–8):1295–305.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Shim JH, Huh JB, Park JY, Jeon YC, Kang SS, Kim JY, Rhie JW, Cho DW. Fabrication of blended polycaprolactone/poly(lactic-co-glycolic acid)/beta-tricalcium phosphate thin membrane using solid freeform fabrication technology for guided bone regeneration. Tissue Eng Part A. 2013;19(3–4):317–28.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Sladkova M, Palmer M, Ohman C, Cheng J, Al-Ansari S, Saad M, Engqvist H, de Peppo GM. Engineering human bone grafts with new macroporous calcium phosphate cement scaffolds. J Tissue Eng Regen Med. 2018;12(3):715–26.PubMedCrossRefGoogle Scholar
  121. 121.
    Chen W, Liu X, Chen Q, Bao C, Zhao L, Zhu Z, Xu HHK. Angiogenic and osteogenic regeneration in rats via calcium phosphate scaffold and endothelial cell co-culture with human bone marrow mesenchymal stem cells (MSCs), human umbilical cord MSCs, human induced pluripotent stem cell-derived MSCs and human embryonic stem cell-derived MSCs. J Tissue Eng Regen Med. 2018;12(1):191–203.PubMedCrossRefGoogle Scholar
  122. 122.
    Vater C, Lode A, Bernhardt A, Reinstorf A, Heinemann C, Gelinsky M. Influence of different modifications of a calcium phosphate bone cement on adhesion, proliferation, and osteogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res A. 2010;92(4):1452–60.PubMedGoogle Scholar
  123. 123.
    Chen W, Zhou H, Weir MD, Tang M, Bao C, Xu HH. Human embryonic stem cell-derived mesenchymal stem cell seeding on calcium phosphate cement-chitosan-RGD scaffold for bone repair. Tissue Eng Part A. 2013;19(7–8):915–27.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Chen W, Liu J, Manuchehrabadi N, Weir MD, Zhu Z, Xu HH. Umbilical cord and bone marrow mesenchymal stem cell seeding on macroporous calcium phosphate for bone regeneration in rat cranial defects. Biomaterials. 2013;34(38):9917–25.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Chen W, Thein-Han W, Weir MD, Chen Q, Xu HH. Prevascularization of biofunctional calcium phosphate cement for dental and craniofacial repairs. Dent Mater. 2014;30(5):535–44.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Li C, Jiang C, Deng Y, Li T, Li N, Peng M, Wang J. RhBMP-2 loaded 3D-printed mesoporous silica/calcium phosphate cement porous scaffolds with enhanced vascularization and osteogenesis properties. Sci Rep. 2017;7:41331.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Zhang HX, Zhang XP, Xiao GY, Hou Y, Cheng L, Si M, Wang SS, Li YH, Nie L. In vitro and in vivo evaluation of calcium phosphate composite scaffolds containing BMP-VEGF loaded PLGA microspheres for the treatment of avascular necrosis of the femoral head. Mater Sci Eng C Mater Biol Appl. 2016;60:298–307.PubMedCrossRefGoogle Scholar
  128. 128.
    Schopper C, Moser D, Spassova E, Goriwoda W, Lagogiannis G, Hoering B, Ewers R, Redl H. Bone regeneration using a naturally grown HA/TCP carrier loaded with rh BMP-2 is independent of barrier-membrane effects. J Biomed Mater Res A. 2008;85(4):954–63.PubMedCrossRefGoogle Scholar
  129. 129.
    Schwarz F, Sager M, Ferrari D, Mihatovic I, Becker J. Influence of recombinant human platelet-derived growth factor on lateral ridge augmentation using biphasic calcium phosphate and guided bone regeneration: a histomorphometric study in dogs. J Periodontol. 2009;80(8):1315–23.PubMedCrossRefGoogle Scholar
  130. 130.
    Linde A, Thoren C, Dahlin C, Sandberg E. Creation of new bone by an osteopromotive membrane technique: an experimental study in rats. J Oral Maxillofac Surg. 1993;51(8):892–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Zellin G, Linde A. Effects of different osteopromotive membrane porosities on experimental bone neogenesis in rats. Biomaterials. 1996;17(7):695–702.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Polimeni G, Koo KT, Qahash M, Xiropaidis AV, Albandar JM, Wikesjo UM. Prognostic factors for alveolar regeneration: effect of tissue occlusion on alveolar bone regeneration with guided tissue regeneration. J Clin Periodontol. 2004;31(9):730–5.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Mardas N, Kostopoulos L, Stavropoulos A, Karring T. Evaluation of a cell-permeable barrier for guided tissue regeneration combined with demineralized bone matrix. Clin Oral Implants Res. 2003;14(6):812–8.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Gutta R, Baker RA, Bartolucci AA, Louis PJ. Barrier membranes used for ridge augmentation: is there an optimal pore size? J Oral Maxillofac Surg. 2009;67(6):1218–25.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Basile MA, d’Ayala GG, Malinconico M, Laurienzo P, Coudane J, Nottelet B, Ragione FD, Oliva A. Functionalized PCL/HA nanocomposites as microporous membranes for bone regeneration. Mater Sci Eng C Mater Biol Appl. 2015;48:457–68.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Lee HH, Yu HS, Jang JH, Kim HW. Bioactivity improvement of poly(epsilon-caprolactone) membrane with the addition of nanofibrous bioactive glass. Acta Biomater. 2008;4(3):622–9.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Leal AI, Caridade SG, Ma J, Yu N, Gomes ME, Reis RL, Jansen JA, Walboomers XF, Mano JF. Asymmetric PDLLA membranes containing Bioglass(R) for guided tissue regeneration: characterization and in vitro biological behavior. Dent Mater. 2013;29(4):427–36.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Deepthi S, Venkatesan J, Kim SK, Bumgardner JD, Jayakumar R. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Int J Biol Macromol. 2016;93(Pt B):1338–53.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Venkatesan J, Anil S, Kim SK, Shim MS. Chitosan as a vehicle for growth factor delivery: various preparations and their applications in bone tissue regeneration. Int J Biol Macromol. 2017;104(Pt B):1383–97.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Teng SH, Lee EJ, Yoon BH, Shin DS, Kim HE, Oh JS. Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. J Biomed Mater Res A. 2009;88(3):569–80.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Kong L, Gao Y, Lu G, Gong Y, Zhao N, Zhang X. A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Eur Polym J. 2006;42(12):3171–9.CrossRefGoogle Scholar
  142. 142.
    Zou Q, Li Y, Zhang L, Zuo Y, Li J, Li X. Characterization and cytocompatibility of nano-hydroxyapatite/chitosan bone cement with the addition of calcium salts. J Biomed Mater Res B Appl Biomater. 2009;90(1):156–64.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Manjubala I, Scheler S, Bossert J, Jandt KD. Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique. Acta Biomater. 2006;2(1):75–84.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Xing M, Yang W, Hun G, Jintang W. Nano-hydroxyapatite/chitosan sponge-like biocomposite for repairing of rat calvarial critical-sized bone defect. J Bioact Compat Polym. 2011;26(4):335–46.CrossRefGoogle Scholar
  145. 145.
    He Y, Dong Y, Cui F, Chen X, Lin R. Ectopic osteogenesis and scaffold biodegradation of nano-hydroxyapatite-chitosan in a rat model. PLoS One. 2015;10(8):e0135366.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Ji Y, Wang M, Liu W, Chen C, Cui W, Sun T, Feng Q, Guo X. Chitosan/nHAC/PLGA microsphere vehicle for sustained release of rhBMP-2 and its derived synthetic oligopeptide for bone regeneration. J Biomed Mater Res A. 2017;105(6):1593–606.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Li Y, Zhang Z, Zhang Z. Porous chitosan/nano-hydroxyapatite composite scaffolds incorporating simvastatin-loaded PLGA microspheres for bone repair. Cells Tissues Organs. 2018;205(1):20–31.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Mota J, Yu N, Caridade SG, Luz GM, Gomes ME, Reis RL, Jansen JA, Walboomers XF, Mano JF. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta Biomater. 2012;8(11):4173–80.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Ribeiro N, Sousa SR, van Blitterswijk CA, Moroni L, Monteiro FJ. A biocomposite of collagen nanofibers and nanohydroxyapatite for bone regeneration. Biofabrication. 2014;6(3):035015.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Liao S, Wang W, Uo M, Ohkawa S, Akasaka T, Tamura K, Cui F, Watari F. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Biomaterials. 2005;26(36):7564–71.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Song JM, Shin SH, Kim YD, Lee JY, Baek YJ, Yoon SY, Kim HS. Comparative study of chitosan/fibroin-hydroxyapatite and collagen membranes for guided bone regeneration in rat calvarial defects: micro-computed tomography analysis. Int J Oral Sci. 2014;6(2):87–93.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Verissimo DM, Leitao RF, Figueiro SD, Goes JC, Lima V, Silveira CO, Brito GA. Guided bone regeneration produced by new mineralized and reticulated collagen membranes in critical-sized rat calvarial defects. Exp Biol Med (Maywood, NJ). 2015;240(2):175–84.CrossRefGoogle Scholar
  153. 153.
    Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10(8):858–64.PubMedCrossRefGoogle Scholar
  154. 154.
    Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009;4(3):206–16.PubMedCrossRefGoogle Scholar
  155. 155.
    Kitaori T, Ito H, Schwarz EM, Tsutsumi R, Yoshitomi H, Oishi S, Nakano M, Fujii N, Nagasawa T, Nakamura T. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum. 2009;60(3):813–23.PubMedCrossRefGoogle Scholar
  156. 156.
    Binder NB, Niederreiter B, Hoffmann O, Stange R, Pap T, Stulnig TM, Mack M, Erben RG, Smolen JS, Redlich K. Estrogen-dependent and C-C chemokine receptor-2-dependent pathways determine osteoclast behavior in osteoporosis. Nat Med. 2009;15(4):417–24.PubMedCrossRefGoogle Scholar
  157. 157.
    Xing Z, Lu C, Hu D, Yu YY, Wang X, Colnot C, Nakamura M, Wu Y, Miclau T, Marcucio RS. Multiple roles for CCR2 during fracture healing. Dis Model Mech. 2010;3(7–8):451–8.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Taguchi Y, Amizuka N, Nakadate M, Ohnishi H, Fujii N, Oda K, Nomura S, Maeda T. A histological evaluation for guided bone regeneration induced by a collagenous membrane. Biomaterials. 2005;26(31):6158–66.PubMedCrossRefGoogle Scholar
  159. 159.
    Calciolari E, Ravanetti F, Strange A, Mardas N, Bozec L, Cacchioli A, Kostomitsopoulos N, Donos N. Degradation pattern of a porcine collagen membrane in an in vivo model of guided bone regeneration. J Periodontal Res. 2018;53(3):430–9.PubMedCrossRefGoogle Scholar
  160. 160.
    Goodman SB. Are new technologies being introduced and adopted appropriately in orthopedic practice? Orthopedics. 2018;41(3):126–7.PubMedCrossRefGoogle Scholar
  161. 161.
    Malchau H. Introducing new technology: a stepwise algorithm. Spine. 2000;25(3):285.PubMedCrossRefGoogle Scholar
  162. 162.
    Malchau H, Bragdon CR, Muratoglu OK. The stepwise introduction of innovation into orthopedic surgery: the next level of dilemmas. J Arthroplast. 2011;26(6):825–31.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Giuseppe Maria de Peppo
    • 1
  • Omar Omar
    • 2
  • Peter Thomsen
    • 2
    Email author
  1. 1.The New York Stem Cell Foundation Research InstituteNew YorkUSA
  2. 2.Department of BiomaterialsInstitute of Clinical Sciences, Sahlgrenska Academy, University of GothenburgGothenburgSweden

Personalised recommendations