Other Interesting Alloys for Aerospace and Related Applications

  • Stefano Gialanella
  • Alessio Malandruccolo
Part of the Topics in Mining, Metallurgy and Materials Engineering book series (TMMME)


Four groups of materials, which are being considered in view of their potential applications in the aerospace field, are presented. Refractory metal, oxide dispersion strengthened and intermetallic alloys are good candidates for replacing nickel-based superalloys, mainly to increase the gas turbine operating temperatures. The main critical issues for each class of materials and relevant remediation strategies are discussed. Shape memory alloys are the fourth class of materials considered herewith: they are fundamental for the development of structures, exploiting the functional properties of these alloys, and that would otherwise require complex design and more numerous components. This design simplification has several interesting aspects, including increased reliability and weight reduction, as several satellite and spacecraft applications of shape memory alloys have proved already in a number of practical solutions for strategic devices in aerospace applications.


  1. Akinc M et al (1999) Boron-doped Molybdenum Silicides for Structural Applications. Materials Science and Engineering A 261 (1–2): 16–23CrossRefGoogle Scholar
  2. Alven D A (2004) Refractory and Precious Metal-Based Superalloys. JOM 56 (9): 27CrossRefGoogle Scholar
  3. Aoki K, Izumi O (1979) Improvement in Room Temperature Ductility of the L12 Type Intermetallic Compound Ni3Al by Boron addition. Journal of the Japan Institute of Metals 43 (12): 119–1196CrossRefGoogle Scholar
  4. Auricchio F et al (2003) Modelling of SMA Materials: Training and Two Way Memory Effects. Computers and Structures 81: 2301–2317CrossRefGoogle Scholar
  5. Azim M A et al (2017) Characterization of Oxidation Kinetics of Mo-Si-B Based Materials. Oxidation of Metals 87 (1–2): 89–108CrossRefGoogle Scholar
  6. Baker I et al (1998) The Room Temperature Strengthening Effect of Boron as a Function of Aluminum Concentration in FeAl. Intermetallics 6 (3): 177–183CrossRefGoogle Scholar
  7. Barbarino S et al (2011) A Review of Morphing Aircraft. Journal of Intelligent Material Systems and Structures 22: 823–877CrossRefGoogle Scholar
  8. Bei H, George E P (2005) Microstructure and Mechanical Properties of a Directionally Solidified NiAl-Mo Eutectic Alloy. Acta Materialia 53 (1): 69–77CrossRefGoogle Scholar
  9. Benjamin J S (1990) Mechanical Alloying – A Perspective. Metal Powder Report 45 (2): 122–127CrossRefGoogle Scholar
  10. Benjamin J S, Bomford MJ (1977) Dispersion Strengthened Aluminum Made by Mechanical Alloying. Metallurgical Transactions A 8 (8): 1301–1305CrossRefGoogle Scholar
  11. Bewlay B P et al (1995) Solidification Processing of High Temperature Intermetallic Eutectic-Based Alloys. Materials Science and Engineering A 192: 534–543CrossRefGoogle Scholar
  12. Bewlay B P et al (2003a) A Review of Very-High-Temperature Nb-Silicide-Based Composites. Metallurgical and Materials Transactions A 34 (10): 2043–2052CrossRefGoogle Scholar
  13. Bewlay B P et al (2003b) Ultrahigh-Temperature Nb-Silicide-Based Composites. MRS Bulletin 28 (09): 646–653CrossRefGoogle Scholar
  14. Bochenek K, Batista M (2015) Advances in Processing of NiAl Intermetallic Alloys and Composites for High Temperature Aerospace Applications. Progress in Aerospace Sciences 79: 136–146.CrossRefGoogle Scholar
  15. Bokaie M D et al (1998) Release Device for Retaining Pins. US Patent 5,771,742Google Scholar
  16. Briant C L (2000) New Applications for Refractory Metals. JOM 51 (3): 36CrossRefGoogle Scholar
  17. Brosse J B et al (1981) Intrinsic Intergranular Brittleness of Molybdenum. Scripta Metallurgica 15 (6): 619–623CrossRefGoogle Scholar
  18. Brueckner J, Girvin R (2008) Airport Noise Regulation, Airline Service Quality, an Social Welfare. Transport Research Part B: Methodological 42 (1): 19–37CrossRefGoogle Scholar
  19. Buckley J D et al (1981) Early Development of Ceramic Fiber Insulation for Space Shuttle. Ceramic Bulletin 60: 1196–1200Google Scholar
  20. Buckman R W (2000) New Applications for Tantalum and Tantalum Alloys. JOM 52 (3): 40–41CrossRefGoogle Scholar
  21. Buehler W J et al (1963) Effect of Low-Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi. Journal of Applied Physics 34 (5): 1475–1477CrossRefGoogle Scholar
  22. Burk S et al (2010) Effect of Zr Addition on the High-Temperature Oxidation Behaviour of Mo-Si-B Alloys. Oxidation of Metals 73 (1): 163–181CrossRefGoogle Scholar
  23. Byun T S et al (2013) Irradiation Dose Temperature Dependence of Fracture Toughness in High Dose HT9 Steel from the Fuel Duct of FFTF. Journal of Nuclear Materials 432 (1–3): 1–8CrossRefGoogle Scholar
  24. Caldwell N et al (2007) Heat Transfer Model for Blade Twist Actuator System. Journal of Thermophysics and Heat Transfer 21 (2): 350–360CrossRefGoogle Scholar
  25. Calkins F T et al (2006) Variable Geometry Chevrons for Jet Noise Reduction. Paper presented at the 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), Cambridge, Massachusetts, 8–10 May 2006Google Scholar
  26. Calkins F T et al (2008) Overview of Boeing’s Shape Memory Alloy Based Morphing Aerostructures. Paper presented at the ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Ellicott City, Maryland, USA, 28–30 OctoberGoogle Scholar
  27. Calkins F T, Habe J H (2010) Shape Memory Alloy Based Morphing Aerostructures. Journal of Mechanical Design 132 (11): 111012CrossRefGoogle Scholar
  28. Cantor B et al (2001) Aerospace Materials. CRC PressGoogle Scholar
  29. Cao H et al (1994) Mechanical Properties of an In Situ Synthesized Nb/Nb3Al Layered Composite. Materials Science and Engineering A 185 (1–2): 87–95CrossRefGoogle Scholar
  30. Cao H et al (2013) Preparation of Dispersion Strengthened Aluminum Alloy by High Energy Ball Milling. Advanced Materials Research 602–604: 598–601Google Scholar
  31. Carpenter B, Lyons J (2002) Lightweight Flexible Solar Array Validation Report. Available via DIALOG. Accessed 17 Sept 2018
  32. Casati R et al (2014) Thermal Cycling of Stress-Induced Martensite for High-Performance Shape Memory Effect. Scripta Materialia 80 (13–16)CrossRefGoogle Scholar
  33. Chen J, Hoffelner W (2009) Irradiation Creep of Oxide Dispersion Strengthened (ODS) Steels for Advanced Nuclear Applications. Journal of Nuclear Materials 392 (2): 360–363CrossRefGoogle Scholar
  34. Chen Y (2013) Irradiation Effects of HT-9 Martensitic Steel. Nuclear Engineering and Technology 45 (3): 311–322CrossRefGoogle Scholar
  35. Chen Y X et al (2000) Microstructure and Phase Stability Studies on Heusler Phase Ni2AlHf and G-Phase Ni16Hf6Si7 in Directionally Solidified NiAl-Cr(Mo) Eutectic Alloyed with Hf. Journal of Materials Research 15 (6): 1261–1270CrossRefGoogle Scholar
  36. Cockeram B V (2006) The Mechanical Properties and Fracture Mechanisms of Wrought Low Carbon Arc Cast (LCAC), Molybdenum-0.5pct Titanium-0.1pct Zirconium (TZM), and Oxide Dispersion Strengthened (ODS) Molybdenum Flat Products. Materials Science and Engineering A 418 (1–2): 120–136CrossRefGoogle Scholar
  37. Cockeram B V (2009) The Fracture Toughness and Toughening Mechanism of Commercially Available Unalloyed Molybdenum and Oxide Dispersion Strengthened Molybdenum with an Equiaxed, Large Grain Structure. Metallurgical and Materials Transactions A 40: 2843–2860CrossRefGoogle Scholar
  38. Cornish L A et al (2006) New Pt-based Alloys for High Temperature Application in Aggressive Environments: The Next Stage. International Platinum Conference “Platinum Surges Ahead”, The South African Institute of Mining and Metallurgy: 57–66Google Scholar
  39. Cui C Y et al (2005) High Tensile Elongation of a Directionally Solidified NiAl Multiphase Alloy at High Temperatures. Materials Science and Engineering A 396 (1–2): 194–201CrossRefGoogle Scholar
  40. Darolia R (1991) NiAl Alloys for High-Temperature Structural Applications. JOM 43 (3): 44–49CrossRefGoogle Scholar
  41. Dimiduk D M, Perepezko J H (2003) Mo-Si-B Alloys: Developing a Revolutionary Turbine-Engine Material. MRS Bulletin 28 (9): 639–645CrossRefGoogle Scholar
  42. Donachie M J, Donachie S J (2002) Superalloys – A Technical Guide. ASM InternationalGoogle Scholar
  43. Duerig T W et al (1990) Engineering Aspects of Shape Memory Alloys. Butterworth-HeinemannGoogle Scholar
  44. El-Genk M S (2009) Deployment History and Design Considerations for Space Reactor Power Systems. Acta Astronautica 64 (9–10): 833.849Google Scholar
  45. El-Genk M S, Tournier J M (2005) A Review of Refractory Metal Alloys and Mechanically Alloyed-Oxide Dispersion Strengthened Steels for Space Nuclear Power Systems. Journal of Nuclear Materials 340 (1): 93–112CrossRefGoogle Scholar
  46. Elzey D M, Artz E (1988) Oxide Dispersion Strengthened Superalloys: The Role of Grain Structure and Dispersion during High Temperature Low Cycle Fatigue. In: Reichman S et al (ed) Superalloys, The Metallurgical Society, p 595–604Google Scholar
  47. Fairbank G B et al (2000) Ultra-High Temperature Intermetallics for The Third Millennium. Intermetallics 8 (9–11): 1091–1100CrossRefGoogle Scholar
  48. Fischer B et al (1999) High Temperature Mechanical Properties of the Platinum Group Metals. Platinum Metals Review 43 (l): 18–28Google Scholar
  49. Froes F H (1990) The Structural Applications of Mechanical Alloying. In: Froes F H, deBarbdillo J J (eds) Proceedings of an ASM International Conference, Myrtle Beach, South Carolina, 27–29 March 1990. ASM International, Materials Park, OhioGoogle Scholar
  50. Gao M C et al (2008) The First-Principles Design of Ductile Refractory Alloys. JOM 60 (7): 61–65CrossRefGoogle Scholar
  51. Gilman P S, Nix W D (1981) The Structure and Properties of Aluminum Alloys Produced by Mechanical Alloying: Powder Processing and Resultant Powder Structures. Metallurgical and Materials Transactions A 12 (5): 813–824CrossRefGoogle Scholar
  52. Gu Y F et al (2004) Chromium and Chromium-Based Alloys: Problems and possibilities for High Temperature Service. JOM 56 (9): 28–33CrossRefGoogle Scholar
  53. Gu Y F et al (2005) Microstructural Evolution and Mechanical Properties of Cr-Ru Alloys. Metallurgical and Materials Transactions A 36 (3): 577–582CrossRefGoogle Scholar
  54. H C Starck Fabricated Products (2013) Defense and Aerospace Applications of Molybdenum, Tungsten and Tantalum Products. Available via DIALOG. Accessed 15 Nov 2018
  55. Harada H (2003) High Temperature Materials for Gas Turbines. The Present and Future. In: Proceedings of the International Gas Turbine Congress, Tokyo, 2–7 November 2003Google Scholar
  56. Harper M A, Rapp R A (1994) Codeposited Chromium and Silicon Diffusion Coatings for Fe-Base Alloys via Pack Cementation. Oxidation of Metals 42 (3–4): 303–333CrossRefGoogle Scholar
  57. Hart D J et al (2010) Jet Engine Chevron Application: II Experimentally Validated Numerical Analysis. Smart Materials and Structures 19 (1): 015021CrossRefGoogle Scholar
  58. Hart D J et al (2010) Use of a Ni60Ti Shape Memory Alloy for Active Jet Engine Chevron Application: I Thermomechanical Characterization. Smart Materials and Structures 19 (1): 015020CrossRefGoogle Scholar
  59. Hartl D J, Lagoudas D C (2007) Aerospace Applications of Shape Memory Alloys. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 221, p 535–552CrossRefGoogle Scholar
  60. Heilmeier M et al (2009) Metallic Materials for Structural Applications Beyond Nickel-based Superalloys. JOM 61 (7): 61–67CrossRefGoogle Scholar
  61. Hoffelner W (2011) Design Related Aspects in Advanced Nuclear Fission Plants. Journal of Nuclear Materials 409 (2): 112–116CrossRefGoogle Scholar
  62. Howson T E et al (1980) Creep and Stress Rupture of Oxide Dispersion Strengthened Mechanically Alloyed Inconel Alloy MA754. Metallurgical Transactions A 11 (9): 1599–10607CrossRefGoogle Scholar
  63. Icardi U, Ferrero L (2009) Preliminary Study of an Adaptive Wing with Shape Memory Alloy Torsion Actuators. Materials & Design 30 (10): 4200–4210CrossRefGoogle Scholar
  64. Jacot A D et al (2002) Shape Memory Alloy Device and Control Method. US Patent 6,499,952 B1Google Scholar
  65. Jardine A P et al (1997) Smart Wing Shape Memory Alloy Actuator Design and Performance. In: Goldstein D H, Chipman R A (eds) Proceedings of SPIE – The International Society for Optical Engineering. Polarization: Measurement, Analysis, and Remote Sensing, San Diego, CA, United States, 30 July – 1 August 1997Google Scholar
  66. Jehanno P et al (2005) Assessment of a Powder Metallurgical Processing Route for Refractory Metal Silicide Alloys. Metallurgical and Materials Transactions A 36 (3): 515–523CrossRefGoogle Scholar
  67. Jenkins P P, Landis G A (1995) A Rotating Arm using Shape Memory Alloy. In NASA (ed) The 29th Aerospace Mechanisms Symposium, p 167–171Google Scholar
  68. Jha SC et al (1989) Dispersoid in Rapidly Solidified B2 Nickel Aluminides. Scripta Metallurgica 23: 805–810CrossRefGoogle Scholar
  69. Jiao Z B et al (2016) Strategies for Improving Ductility of Ordered Intermetallics. Progress in Natural Science: Materials International 26 (1): 1–12CrossRefGoogle Scholar
  70. Johnson A D (1992) Non-Explosive Separation Device. US Patent 5,119,555Google Scholar
  71. Jones E S et al (1958) The Oxidation of Molybdenum. Corrosion 14 (1): 20–26CrossRefGoogle Scholar
  72. Kaplanskii Y Y (2018) Microstructure and Thermomechanical Behavior of Heusler Phase Ni2AlHf-strengthened NiAl-Cr(Co) Alloy produced by HIP of Plasma-spheroidized Powder. Materials Science and Engineering A 729: 398–410CrossRefGoogle Scholar
  73. Kaufman G, Mayo I (1997) The Story of Nitinol: The Serendipitous Discovery of the Memory Metal and its Applications. The Chemical Educator 2 (2): 1–21CrossRefGoogle Scholar
  74. Kennedy D K et al (2000) Development of an SMA Actuator for In-Flight Rotor Blade Tracking. Journal of Intelligent Material Systems and Structures 15 (4): 235–248CrossRefGoogle Scholar
  75. King D et al (2009) Advanced Aerospace Materials: Past, Present and Future. Aviation and the Environment 3: 22–27Google Scholar
  76. Klueh R L (1993) Tensile Behavior of Neutron-Irradiated Martensitic Steels: A Review. Nuclear Technology 102 (3): 376–385CrossRefGoogle Scholar
  77. Klueh RL, Nelson A T (2007) Ferritic/martensitic steels for next generation reactors. Journal of Nuclear Materials 371:37–52CrossRefGoogle Scholar
  78. Knittel S et al (2013) Development of Silicide Coatings to Ensure the Protection of Nb and Silicide Composites against High Temperature Oxidation. Surface and Coatings Technology 235: 401–406CrossRefGoogle Scholar
  79. Koch C C, Whittenberger J D (1996) Mechanical Milling/alloying of intermetallics. Intermetallics 4 (5): 339–355CrossRefGoogle Scholar
  80. Korb L J et al (1981) The Shuttle Orbiter Thermal Protection System. Ceramic Bulletin 60: 1188–1193Google Scholar
  81. Kudva J (2004) Overview of the DARPA Smart Wing Project. Journal of Intelligent Material Systems and Structures 15: 261–267CrossRefGoogle Scholar
  82. Kung S C, Rapp R A (1989) Analyses of the Gaseous Species in Halide-Activated Cementation Coating Packs. Oxidation of Metals 32 (1–2): 89–109CrossRefGoogle Scholar
  83. Lasalmonie A (2006) Intermetallics: Why is it so Difficult to Introduce Them in Gas Turbine Engines? Intermetallics 14 (10–11): 1123–1129CrossRefGoogle Scholar
  84. Lassner E, Schubert W D (1999) Tungsten – Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. Kluwer Academic/Plenum Publisher, New YorkGoogle Scholar
  85. Lewis P (1997) Aircraft Industry Accepts Shape Memory Alloy Technology. Aircraft Engineering and Aerospace Technology 69 (1): 31–34CrossRefGoogle Scholar
  86. Liebscher C H, Glatzel U (2014) Configuration of Superdislocations in the γ’-Pt3Al Phase of a Pt-based Superalloy. Intermetallics 48: 71–78CrossRefGoogle Scholar
  87. Lipetzky P (2002) Refractory Metals: A Primer. JOM 54 (3): 47–49CrossRefGoogle Scholar
  88. Liu C T et al (1985) Effect of Boron on Grain-Boundaries in Ni3Al. Acta Metallurgica 33 (2): 213–229CrossRefGoogle Scholar
  89. Liu C T, Kumar K S (1993) Ordered Intermetallic Alloys, Part I: Nickel and Iron Aluminides. JOM 45 (3): 38–44CrossRefGoogle Scholar
  90. Liu G et al (2013) Nanostructured High-Strength Molybdenum Alloys with Unprecedented Tensile Ductility. Nature Materials 12 (4): 344–350CrossRefGoogle Scholar
  91. Locci I E et al (1996) Microstructure and Phase Stability of Single Crystal NiAl alloyed with Hf and Zr. Journal of Materials Research 11 (12): 3024–3038CrossRefGoogle Scholar
  92. Loewy R G (1997) Recent Developments in Smart Structures with Aeronautical Applications. Smart Materials and Structures 6 (5): R11–R42CrossRefGoogle Scholar
  93. Lu Z L et al (2013) Fabricating Hollow Turbine Blades using Short Carbon Fiber-reinforced SiC Composite. International Journal of Advanced Manufacturing Technology 69 (1–4): 417–425CrossRefGoogle Scholar
  94. Mabe J H et al (2005) Design and Control of a Morphing Chevron for Takeoff and Cruise Noise Reduction. In: Proceedings of the 26th Annual AIAA Aeroacoustics Conference, Monterey, CA, 23–25 May 2005Google Scholar
  95. Mabe J H et al (2006) Boeing’s Variable Geometry Chevron, Morphing Aerostructure for Jet Noise Reduction. Paper presented at the 47th AIAA/ASME/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island, 1–4 May 2006Google Scholar
  96. Mabe J H et al (2007) Full-Scale Flight Tests of Aircraft Morphing Structures using SMA Actuators. In: Proceedings Volume 6525, Active and Passive Smart Structures and Integrated Systems 2007. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, United States, 2007Google Scholar
  97. Mabe J H et al (2008) Variable Area Jet Nozzle Using Shape Memory Alloy Actuators in an Antagonistic Design. In: Proceedings Volume 6930, Industrial and Commercial Applications of Smart Structures Technologies 2008. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, United States, 2008Google Scholar
  98. Majumdar S et al (2009) Densification and Grain Growth during Isothermal Sintering of Mo and Mechanically Alloyed Mo-TZM. Acta Materialia 57 (14): 415–4168CrossRefGoogle Scholar
  99. Mansur L F et al (2004) Materials Needs for Fusion, Generation-IV Fission Reactors and Spallation Neutron Sources – Similarities and Differences. Journal of Nuclear Materials 329–333 Part A: 166–172Google Scholar
  100. Mason D P, Van Atkin D C (1993) The Effect of Microstructural Scale on Hardness of MoSi2-Mo5Si3 Eutectics. Scripta Metallurgica et Materialia 28 (2): 185–189CrossRefGoogle Scholar
  101. McKamey C G et al (1991) A Review of Recent Developments in Fe3Al-based Alloys. Journal of Materials Research 6 (8): 1779–1805CrossRefGoogle Scholar
  102. McLean M (1983) Directionally Solidified Materials for High Temperature Service. The Metal Society, London, UKGoogle Scholar
  103. Medvedeva N I et al (2007) Solid Solution Softening and Hardening in the Group-V and Group-IV bcc Transition Metals Alloys: First Principles Calculations and Atomistic Modeling. Physical Review B 76 (21): 212104CrossRefGoogle Scholar
  104. Melton K N (1999) General Applications of Shape Memory Alloys and Smart Materials. In: Otsuka K, Wayman C M (eds) Shape Memory Materials. Cambridge University Press, p 220–239Google Scholar
  105. Mendiratta M G, Dimiduk D M (1993) Strength and Toughness of a Nb/Nb5Si3 Composite. Metallurgical and Materials Transactions A 24 (2): 501–504CrossRefGoogle Scholar
  106. Miller M K et al (2003) Improvement in the Ductility of Molybdenum Alloys due to Grain Boundary Segregation. Scripta Metallurgica 46 (4): 299–303CrossRefGoogle Scholar
  107. Miller M K et al (2005) Stability of Ferritic MA/ODS Alloys at High Temperatures. Intermetallics 13 (3–4): 387–392CrossRefGoogle Scholar
  108. Miller M K et al (2006) Characterization of Precipitates in MA/ODS Ferritic Alloys. Journal of Nuclear Materials 351 (1–3): 261–268CrossRefGoogle Scholar
  109. Miracle D B (1993) The Physical and Mechanical Properties of NiAl. Acta Metallurgica et Materialia 41 (39): 649–684CrossRefGoogle Scholar
  110. Mitra R (2006) Mechanical Behaviour and Oxidation Resistance of Structural Silicides. International Materials Reviews 51 (1): 13–64CrossRefGoogle Scholar
  111. Mitra R (2018) Intermetallic Matrix Composites. Woodhead Publishing, Duxford, UKGoogle Scholar
  112. Morris D, Gunther S (1997) Room and High Temperature Mechanical Behavior of a Fe3Al-based Alloy with α-α” Microstructure. Acta Materialia 45 (2): 811–822CrossRefGoogle Scholar
  113. Mueller A J et al (2000) Evaluation of Oxide Dispersion Strengthened (ODS) Molybdenum and Molybdenum-Rhenium Alloys. International Journal of Refractory Metals and Hard Materials 18 (4–5): 205–211CrossRefGoogle Scholar
  114. Muktinutalapati N R (2011) Materials for Gas Turbines – An Overview. In: Benini E (ed) Advances in Gas Turbine Technology, IntecOpen, p 293–314Google Scholar
  115. Mutry K L, Charit I (2008) Structural Materials for Gen-IV Nuclear Reactors: Challenges and Opportunities. Journal of Nuclear Materials 383 (1–2): 189–195Google Scholar
  116. Noebe R D et al (2009) High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and associated Processing Methods.Google Scholar
  117. Ölander A (1932) An Electrochemical Investigation of Solid Cadmium-Gold Alloys. Journal of the American Chemical Society 54 (10): 3819–3833CrossRefGoogle Scholar
  118. Parthasarathy T A et al (2002) Oxidation Mechanisms in Mo-reinforced Mo5SiB2(T2)– Mo3Si Alloys. Acta Materialia 50 (7): 1857–1868CrossRefGoogle Scholar
  119. Patra A et al (2015) Tungsten Based ODS Alloys-A Comprehensive Survey. Lap Lambert Academic PublishingGoogle Scholar
  120. Perepezko J H (2009) The Hotter the Engine, the Better. Science 356 (5956): 1068–1069CrossRefGoogle Scholar
  121. Perepezko J H et al (2014) Structural Intermetallics, Alloy Design, Processing, and Applications. Advanced Materials and Processes 172 (9): 22–26Google Scholar
  122. Petrovic J J, Vasudevan A K (1999) Key Development in High Temperature Structural Silicides. Materials Science and Engineering A 261: 1–5CrossRefGoogle Scholar
  123. Pettifor D G (1988a) Structure Maps for Pseudobinary and Ternary Phases. Materials Science and Technology 4 (8): 675–691CrossRefGoogle Scholar
  124. Pettifor D G (1988b) Theoretical Predictions of Structure and Related Properties of Intermetallics. Materials Science and Technology 8 (4): 345–349CrossRefGoogle Scholar
  125. Pickens J R (1991) High-Strength Aluminum P/M Alloys. In: ASM International (ed) ASM Handbook Volume 2 – Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. ASM InternationalGoogle Scholar
  126. Pitt D M et al (2001) SAMPSON Smart Inlet SMA Powered Adaptive Lip Design and Static Test. In: 19th AIAA Applied Aerodynamics Conference, Fluid Dynamics and Co-located Conferences, Anaheim, CA, USAGoogle Scholar
  127. Pitt D M et al (2002) SAMPSON Smart Inlet Design Overview and Wind Tunnel Test: II. In: Proceedings Volume 4698, Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies. SPIE’s 9th Annual International Symposium on Smart Structures and Materials, San Diego, CA, United States, 2002Google Scholar
  128. Pitt D M et al (2002) SAMPSON Smart Inlet Design Overview and Wind Tunnel Test: I. In: Proceedings Volume 4698, Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies. SPIE’s 9th Annual International Symposium on Smart Structures and Materials, San Diego, CA, United States, 2002Google Scholar
  129. Polvani R S et al (1976) High Temperature Creep in a Semi-Coherent NiAl-Ni2AITi Alloy. Metallurgical Transactions A 7: 33–40CrossRefGoogle Scholar
  130. Portebois L et al (2014) Effect of Boron Addition on the Oxidation Resistance of Silicide Protective Coatings: A Focus on Boron Location in as-coated and oxidized coated Niobium Alloys. Surface and Coatings Technology 253: 292–299CrossRefGoogle Scholar
  131. Potgieter J H, Maledi N B (2014) High Temperature Corrosion Resistance of Pt-Based Superalloys in 0.2% SO2-N2 Gas. The Open Materials Science Journal 8: 18–26CrossRefGoogle Scholar
  132. Prahlad H, Chopra I (2001) Design of a Variable Twist Tilt-rotor Blade Using Shape Memory Alloy (SMA) Actuators. In: Proceedings Volume 4327, Smart Structures and Materials 2001: Smart Structures and Integrated Systems. SPIE’s 8th Annual International Symposium on Smart Structures and Materials. Newport Beach, CA, United States, p 46–59Google Scholar
  133. Ray R et al (1989) Carbide-dispersion-strengthened B2 NiAl. Materials Science and Engineering A 119: 103–111CrossRefGoogle Scholar
  134. Reese R T, Vick C P (1983) Soviet Nuclear Powered Satellites. British Interplanetary Society Journal 36: 457–462Google Scholar
  135. Reuss S, Vehoff H (1990) Temperature Dependence of the Fracture Toughness of Single Phase and Two Phase Intermetallics. Scripta Metallurigica et Materialia 24 (6): 1021–1026CrossRefGoogle Scholar
  136. Reviere R D et al (1992) Processing Microstructure and Low-Temperature Properties of Directionally Solidified NiAl/NiAlNb Alloys. Materials Letters 14 (2–3) 149–155CrossRefGoogle Scholar
  137. Richerson D W (2004) Ceramic Components for Gas Turbine Engines: Why Has It Taken So Long? Ceramics Engineering and Science Proceedings 25 (3): 3–32CrossRefGoogle Scholar
  138. Ruggieri R T et al (2008). Development of a 1/4-Scale NiTinol Actuator for Reconfigurable Structures. In: Proceedings Volume 6930, Industrial and Commercial Applications of Smart Structures Technologies 2008. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, United States, 2008Google Scholar
  139. Saiyed N et al (2000) Acoustics and Thrust of Separate-Flow Exhaust Nozzles with Mixing Devices for High-Bypass-Ratio Engines. Available via DIALOG. Accessed 24 Feb 2019
  140. Sakidja R et al (2005) Synthesis of Oxidation Resistant Silicide Coatings on Mo-Si-B Alloys. Scripta Materialia 53 (6) 723–728CrossRefGoogle Scholar
  141. Sankar M et al (2015) Microstructure, Oxidation Resistance and Tensile Properties of Silicide Coated Nb-Alloy C-103. Materials Science and Engineering A 645 (1): 339–346CrossRefGoogle Scholar
  142. Saunders S R et al (1997) Behaviour of Fecralloy and Iron Aluminides Alloys in Coal Gasification Atmospheres Containing HCl. Materials Science Forum 251–254: 583–590CrossRefGoogle Scholar
  143. Scheppe F et al (2002) Nickel Aluminides: A Step Toward Industrial Applications. Materials Science and Engineering A 329–331: 596–601CrossRefGoogle Scholar
  144. Schmidt F F, Ogden H R (1963) The Engineering Properties of Tantalum and Tantalum Alloys. Available via DIALOG. Accessed 8 Nov 2018
  145. Schoijet M, Girifalco L A (1967) Theory of Diffusion in Ordered Alloys of the β-Brass Type. Solid State Communications 29 (3): 481–495Google Scholar
  146. Schoijet M, Girifalco L A (1968) Diffusion in order-disorder Alloys. The Face Centered Cubic AB3 Alloy. Journal of Physics and Chemistry of Solids 29 (6): 911–922CrossRefGoogle Scholar
  147. Sikka V K et al (2000) Advances in Processing of Ni3Al-based Intermetallics and Applications. Intermetallics 8 (9–11): 1329–1337CrossRefGoogle Scholar
  148. Singh K, Chopra I (2002) Design of an Improved Shape Memory Alloy Actuator for Rotor Blade Tracking. In: Proceedings Volume 4701, Smart Structures and Materials 2002: Smart Structures and Integrated Systems. SPIE’s 9th Annual International Symposium on Smart Structures and Materials, San Diego, CA, United States, 2002Google Scholar
  149. Sofla A Y N et al (2010) Shape Morphing of Aircraft Wing: Status and Challenges. Materials & Design 31 (4): 1284–1292CrossRefGoogle Scholar
  150. Soleimani-Dorcheh A et al (2014) On Ultra-High Temperature Oxidation of Cr-Cr3Si Alloys: Effect of Germanium. Materials and Corrosion 65 (12): 1143–1150CrossRefGoogle Scholar
  151. Stoloff N S (2000) Emerging Applications of Intermetallics. Intermetallics 8 (9–11): 1313–1320CrossRefGoogle Scholar
  152. Stone H W (1996) Mars Pathfinder Microrover A Small, Low-Cost, Low-Power Spacecraft. In: Proceedings of the 1996 AIAA Forum on Advanced Developments in Space Robotics.Google Scholar
  153. Strelec J K et al (2003) Design and Implementation of a Shape Memory Alloy Actuated Reconfigurable Wing. Journal of Intelligent Material Systems and Structures 14 (4–5): 257–273CrossRefGoogle Scholar
  154. Strutt P R et al (1976) Creep Behavior of the Heusler Type Structure Alloy NiAl2Ti. Metallurgical Transactions A 7: 23–31CrossRefGoogle Scholar
  155. Sturm D et al (2007) The Influence of Silicon on the Strength and Fracture Toughness of Molybdenum. Materials Science and Engineering A 463 (1–2): 107–114CrossRefGoogle Scholar
  156. Testa C et al (2005) Feasibility Study on Rotorcraft Blade Morphing in Hovering. Proceedings of SPIE – The International Society for Optical Engineering 5764: 171–182Google Scholar
  157. Trinkle D R, Woodward C (2005) The Chemistry of Deformation: How Solutes Soften Pure Metals. Science 310 (5754): 1665–1667CrossRefGoogle Scholar
  158. United Nations General Assembly (1992) Principles Relevant to the Use of Nuclear Power Sources in Outer Space – Resolution 47/68. Available via DIALOG. Accessed 27 Sept 2016
  159. Van Humbeeck J (2012) Shape Memory Alloys with High Transformation Temperatures. Materials Research Bulletin 47 (10): 2966–2968CrossRefGoogle Scholar
  160. Vilasi M et al (1993) Crystal Structure of Tri-Niobium Tri-Iron Chromium Hexasilicide Nb=3Fe=3Cr=lSi6: an Intergrowth of Zr4Co4Ge7 and Nb2Cr4Si5 Blocks. Journal of Alloys and Compounds 194 (1): 127–132CrossRefGoogle Scholar
  161. Vilasi M et al (1998a) New Silicides for New Niobium Protective Coatings. Journal of Alloys and Compounds 264 (1–2): 244–251CrossRefGoogle Scholar
  162. Vilasi M et al (1998b) Phase Equilibria in the Nb-Fe-Cr-Si System. Journal of Alloys and Compounds 269 (1–2): 187–192CrossRefGoogle Scholar
  163. Vorberg S et al (2004) Pt-Al-Cr-Ni Superalloys: Heat Treatment and Microstructure. JOM 56 (9): 40–43CrossRefGoogle Scholar
  164. Vorberg S et al (2005) A TEM Investigation of the γ-γ’ Phase Boundary in Pt-based Superalloys. JOM 57 (3): 49–51CrossRefGoogle Scholar
  165. Wadsworth J et al (1988) Recent Advances in Aerospace Refractory-Metal Alloys. International Materials Reviews 33 (1): 131–150CrossRefGoogle Scholar
  166. Wang C C, Akbar S A (1993) Diffusion in Ordered Alloys and Intermetallic Compounds. Acta Metallurgica et Materialia 41 (10): 2807–2813CrossRefGoogle Scholar
  167. Wang L et al (2016) Microstructure and Mechanical Properties of NiAl-based Hypereutectic Alloy obtained by Liquid Metal Cooling and Zone Melted Liquid Metal Cooling Directional Solidification Techniques. Journal of Materials Research 31 (5): 646–654CrossRefGoogle Scholar
  168. Wang L et al (2017) Microstructure Evolution and Room Temperature Fracture Toughness of as-cast and Directionally Solidified Novel NiAl-Cr(Fe) Alloy. Intermetallics 84: 11–19CrossRefGoogle Scholar
  169. Ward-Close C M et al (1996) Intermetallic-Matrix Composites – A Review. Intermetallics 4 (3): 217–229CrossRefGoogle Scholar
  170. Wenderoth M et al (2005) On the Development and Investigation of Quaternary Pt-Based Superalloys with Ni Additions. Metallurgical and Materials Transactions A 36 (3): 567–575CrossRefGoogle Scholar
  171. Whittenberger J D (1999) 1300 K Creep Behavior of [001] oriented Ni-49Al-1Hf (at%) Single Crystals. Materials Science and Engineering A 286 (1): 165–183CrossRefGoogle Scholar
  172. Whittenberger J D et al (1990a) 1300 K Compressive Properties of Several Dispersion Strengthened NiAl Materials. Journal of Materials Science 25: 2771–2776CrossRefGoogle Scholar
  173. Whittenberger J D et al (1990b) Preliminary Investigation of a NiAl Composite prepared by Cryomilling. Journal of Materials Research 5 (2): 271–277CrossRefGoogle Scholar
  174. Whittenberger J D et al (1992a) Compressive Strength of Directionally Solidified NiAl-NiAlNb Intermetallics at 1200 and 1300 K. Scripta Metallurgica et Materialia 26 (6): 987–992CrossRefGoogle Scholar
  175. Whittenberger J D et al (1992b) Influence of Grain Size on the Creep Behavior of HfC-dispersed NiAl. Materials Science and Engineering A 151: 137–146CrossRefGoogle Scholar
  176. Whittenberger J D et al (1999) Microstructure and 1000-1400 K Mechanical Properties of Cryomilled NiAl-0.7Zr. Journal of Materials Research 14 (6): 2418–2429CrossRefGoogle Scholar
  177. Whittenberger J D et al (2000) Elevated Temperature Compressive Strength Properties of Oxide Dispersion Strengthened NiAl after Cryomilling and Roasting in Nitrogen. Materials Science and Engineering A 291 (1–2): 173–185CrossRefGoogle Scholar
  178. Wiedemann C et al (2005). Size Distribution of NaK Droplets released during RORSAT Reactor Core Ejection. Advances in Space Research 35 (7): 1290–1295CrossRefGoogle Scholar
  179. Witkin D B, Lavernia E J (2006) Synthesis and Mechanical Behavior of Nanostructured Materials via Cryomilling. Progress in Materials Science 51 (1): 1–60CrossRefGoogle Scholar
  180. Wojcik C C (1991) High Temperature Niobium Alloys. In: Stephens J J, Ahmad I (eds) High Temperature Niobium Alloys. The Minerals, Metals and Materials Society, Warrendale, PA, USA, p 1–12Google Scholar
  181. Yamabe-Mitarai Y et al (2004) Platinum-Group-Metals-Based Intermetallics as High-Temperature Structural Materials. JOM 56 (9): 34–39CrossRefGoogle Scholar
  182. Yamabe-Mitarai Y, Murakami H (2014) Mechanical Properties at 2223 K and Oxidation Behavior of Ir Alloys. Intermetallics 48: 86–92CrossRefGoogle Scholar
  183. Yang J M et al (1997) Microstructure and Mechanical Behavior of in-situ Directional Solidified NiAl/Cr(Mo) Eutectic Composite. Acta Materialia 45 (1): 295–305CrossRefGoogle Scholar
  184. Yang R (1992) Equilibria and Microstructural Evolution in the β/β’/γ’ Region of the Ni-Al-Ti System: Modeling and Experiment. Acta Metallurgica et Materialia 40 (7): 1553–1562CrossRefGoogle Scholar
  185. Yang R et al (1991) A Microstructural Study of a Ni2AlTi-Ni(Al,Ti)-Ni3(Al,Ti) Three-Phase Alloy. Journal of Materials Research 6 (2): 343–354CrossRefGoogle Scholar
  186. Yang R et al (1992) Three-Phase β/β’/γ’ Ni-Al-Ti-(Cr,Fe) Alloys for High Temperature Use. Materials Science and Engineering A 152 (1–2): 227–236CrossRefGoogle Scholar
  187. Yu J L et al (2017) Mechanical Properties and Fracture Behavior of an Nb-Silicide in situ Composite. Intermetallics 90: 135–139CrossRefGoogle Scholar
  188. Yu K O et al (1993) Investment Casting of NiAl Single-Crystal Alloys. JOM 45 (5): 49–51CrossRefGoogle Scholar
  189. Yvon P, Carré F (2009) Structural Materials Challenges for Advanced Reactor Systems. Journal of Nuclear Materials 385 (2): 217–222CrossRefGoogle Scholar
  190. Zhao J-C, Westbrook J H (2003) Ultrahigh-Temperature Materials for Jet Engines. MRS Bulletin 28 (9): 622–630CrossRefGoogle Scholar

Further Reading

  1. Lagoudas D C (2007) Shape Memory Alloys – Modelling and Engineering Applications. SpringerGoogle Scholar
  2. Lecce L, Concilio A (2015) Shape Memory Alloy Engineering: for Aerospace, Structural and Biomedical Applications. Butterworth-HeinemannGoogle Scholar
  3. Leo D J (2007) Engineering Analysis of Smart Material Systems. John Wiley & Sons Inc.Google Scholar
  4. Liu C T et al (1992) Ordered Intermetallics – Physical Metallurgy and Mechanical Behaviour. Springer NetherlandsCrossRefGoogle Scholar
  5. Otsuka K, Ren X (2005) Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys. Progress in Materials Science 50 (5): 511–678CrossRefGoogle Scholar
  6. Sauthoff G (1995) Intermetallics. VCH, WeinheimCrossRefGoogle Scholar
  7. Schwartz M (2002) Encyclopedia of Smart Materials – 2 Volume Set. John Wiley & SonsGoogle Scholar
  8. Stoloff N S, Sikka V K (1996) Physical Metallurgy and Processing of Intermetallic Compounds. Chapman & Hall, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Stefano Gialanella
    • 1
  • Alessio Malandruccolo
    • 2
  1. 1.Industrial Engineering DepartmentUniversity of TrentoTrentoItaly
  2. 2.Metallurgy Industrial ConsultantBolzanoItaly

Personalised recommendations