Clinical Decision-Making in the Management of Multiple Sclerosis

  • Syed A. RizviEmail author
  • Joshua A. Stone
  • Saima T. Chaudhry
  • Nichola Haddad
  • Brian Wong
  • Jennifer O. Grimes
Part of the Current Clinical Neurology book series (CCNEU)


Multiple sclerosis is a complex heterogeneous disease. The introduction of several new disease modifying agents and the implications of treatment have increased the burden of decision making in MS therapeutics. There is now increasing data regarding unconventional use of approved therapies such as alternate dosing methods, use of DMD in untested populations such as patients > 60 years, escalation VS induction approaches, as well as other treatment related concerns including risk of rebound disease, treatment of PML and use of DMD post PML, management of pregnant MS patients and use of marijuana in MS patients. In this chapter we discuss the current data related to these topics with an intention to create a better understanding of some of these issues.


Disease-modifying agent PML Marijuana Pregnancy Escalation Induction 


  1. 1.
    Comi G, Martinelli V, Rodegher M, Moiola L, Leocani L, Bajenaru O, et al. Effects of early treatment with glatiramer acetate in patients with clinically isolated syndrome. Mult Scler. 2013;19(8):1074–83.PubMedCrossRefGoogle Scholar
  2. 2.
    Kappos L, Freedman MS, Polman CH, Edan G, Hartung HP, Miller DH, et al. Long-term effect of early treatment with interferon beta-1b after a first clinical event suggestive of multiple sclerosis: 5-year active treatment extension of the phase 3 BENEFIT trial. Lancet Neurol. 2009;8(11):987–97.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Kappos L, Edan G, Freedman MS, Montalban X, Hartung HP, Hemmer B, et al. The 11-year long-term follow-up study from the randomized BENEFIT CIS trial. Neurology. 2016;87(10):978–87.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kavaliunas A, Manouchehrinia A, Stawiarz L, Ramanujam R, Agholme J, Hedstrom AK, et al. Importance of early treatment initiation in the clinical course of multiple sclerosis. Mult Scler. 2017;23(9):1233–40.PubMedCrossRefGoogle Scholar
  5. 5.
    Kinkel RP, Dontchev M, Kollman C, Skaramagas TT, O'Connor PW, Simon JH, et al. Association between immediate initiation of intramuscular interferon beta-1a at the time of a clinically isolated syndrome and long-term outcomes: a 10-year follow-up of the controlled high-risk avonex multiple sclerosis prevention study in ongoing neurological surveillance. Arch Neurol. 2012;69(2):183–90.CrossRefGoogle Scholar
  6. 6.
    Miller AE, Wolinsky JS, Kappos L, Comi G, Freedman MS, Olsson TP, et al. Oral teriflunomide for patients with a first clinical episode suggestive of multiple sclerosis (TOPIC): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13(10):977–86.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Romeo MAL, Martinelli V, Dalla Costa G, Colombo B, De Feo D, Esposito F, et al. Assessing the role of innovative therapeutic paradigm on multiple sclerosis treatment response. Acta Neurol Scand. 2018;138(5):447–53.PubMedCrossRefGoogle Scholar
  8. 8.
    Freedman MS. Induction vs. escalation of therapy for relapsing multiple sclerosis: the evidence. Neurol Sci. 2008;29(Suppl 2):S250–2.PubMedCrossRefGoogle Scholar
  9. 9.
    Le Page E, Edan G. Induction or escalation therapy for patients with multiple sclerosis? Rev Neurol. 2018;174(6):449–57.PubMedCrossRefGoogle Scholar
  10. 10.
    Merkel B, Butzkueven H, Traboulsee AL, Havrdova E, Kalincik T. Timing of high-efficacy therapy in relapsing-remitting multiple sclerosis: a systematic review. Autoimmun Rev. 2017;16(6):658–65.PubMedCrossRefGoogle Scholar
  11. 11.
    Giovannoni G, Turner B, Gnanapavan S, Offiah C, Schmierer K, Marta M. Is it time to target no evident disease activity (NEDA) in multiple sclerosis? Mult Scler Relat Disord. 2015;4(4):329–33.PubMedCrossRefGoogle Scholar
  12. 12.
    Ingwersen J, Aktas O, Hartung HP. Advances in and algorithms for the treatment of relapsing-remitting multiple sclerosis. Neurotherapeutics. 2016;13(1):47–57.PubMedCrossRefGoogle Scholar
  13. 13.
    Edan G, Le Page E. Induction therapy for patients with multiple sclerosis: why? When? How? CNS Drugs. 2013;27(6):403–9.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gajofatto A, Benedetti MD. Treatment strategies for multiple sclerosis: when to start, when to change, when to stop? World J Clin Cases. 2015;3(7):545–55.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bevan CJ, Cree BA. Disease activity free status: a new end point for a new era in multiple sclerosis clinical research? JAMA Neurol. 2014;71(3):269–70.PubMedCrossRefGoogle Scholar
  16. 16.
    Kappos L, De Stefano N, Freedman MS, Cree BA, Radue EW, Sprenger T, et al. Inclusion of brain volume loss in a revised measure of ‘no evidence of disease activity’ (NEDA-4) in relapsing-remitting multiple sclerosis. Mult Scler. 2016;22(10):1297–305.PubMedCrossRefGoogle Scholar
  17. 17.
    Matta AP, Nascimento OJ, Ferreira AC, Magalhaes TN, Benevides TP, Kirmse A, et al. No evidence of disease activity in multiple sclerosis patients. Expert Rev Neurother. 2016;16(11):1279–84.PubMedCrossRefGoogle Scholar
  18. 18.
    Freedman MS. Are we in need of NEDA? Mult Scler. 2016;22(1):5–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Le Page E, Leray E, Taurin G, Coustans M, Chaperon J, Morrissey SP, et al. Mitoxantrone as induction treatment in aggressive relapsing remitting multiple sclerosis: treatment response factors in a 5 year follow-up observational study of 100 consecutive patients. J Neurol Neurosurg Psychiatry. 2008;79(1):52–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Le Page E, Leray E, Edan G, French Mitoxantrone Safety Group. Long-term safety profile of mitoxantrone in a french cohort of 802 multiple sclerosis patients: a 5-year prospective study. Mult Scler. 2011;17(7):867–75.PubMedCrossRefGoogle Scholar
  21. 21.
    Cohen JA, Coles AJ, Arnold DL, Confavreux C, Fox EJ, Hartung HP, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1819–28. Scholar
  22. 22.
    Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1829–39. Scholar
  23. 23.
    Giovannoni G, Soelberg Sorensen P, Cook S, Rammohan K, Rieckmann P, Comi G, et al. Safety and efficacy of cladribine tablets in patients with relapsing-remitting multiple sclerosis: results from the randomized extension trial of the CLARITY study. Mult Scler. 2018;24(12):1594–604.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Mancardi G, Saccardi R. Autologous haematopoietic stem-cell transplantation in multiple sclerosis. Lancet Neurol. 2008;7(7):626–36.PubMedCrossRefGoogle Scholar
  25. 25.
    Muraro PA, Pasquini M, Atkins HL, Bowen JD, Farge D, Fassas A, et al. Long-term outcomes after autologous hematopoietic stem cell transplantation for multiple sclerosis. JAMA Neurol. 2017;74(4):459–69.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Burt RK, Loh Y, Cohen B, Stefoski D, Balabanov R, Katsamakis G, et al. Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study. Lancet Neurol. 2009;8(3):244–53.CrossRefGoogle Scholar
  27. 27.
    Burt RK, Balabanov R, Han X, Sharrack B, Morgan A, Quigley K, et al. Association of nonmyeloablative hematopoietic stem cell transplantation with neurological disability in patients with relapsing-remitting multiple sclerosis. JAMA. 2015;313(3):275–84.PubMedCrossRefGoogle Scholar
  28. 28.
    Nash RA, Hutton GJ, Racke MK, Popat U, Devine SM, Steinmiller KC, et al. High-dose immunosuppressive therapy and autologous HCT for relapsing-remitting MS. Neurology. 2017;88(9):842–52.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Atkins HL, Bowman M, Allan D, Anstee G, Arnold DL, Bar-Or A, et al. Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial. Lancet. 2016;388(10044):576–85.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Sormani MP, Muraro PA, Saccardi R, Mancardi G. NEDA status in highly active MS can be more easily obtained with autologous hematopoietic stem cell transplantation than other drugs. Mult Scler. 2017;23(2):201–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Freedman MS. Is there a safe time to discontinue therapy in MS? Nat Rev Neurol. 2017;13:10–1.CrossRefGoogle Scholar
  32. 32.
    Kister I. Disease-modifying therapies can be safely discontinued in an individual with stable relapsing-remitting MS – YES. Mult Scler J. 2017;23(9):1188–090.CrossRefGoogle Scholar
  33. 33.
    Tobin WO, Weinshenker BG. Disease-modifying therapies can be safely discontinued in an individual with stable relapsing-remitting MS – NO. Mult Scler J. 2017;23(9):1190–2.CrossRefGoogle Scholar
  34. 34.
    European Study Group on interferon beta-1b in secondary progressive MS. Placebo-controlled multicentre randomised trial of interferon beta-1b in treatment of secondary progressive multiple sclerosis. Lancet. 1998;352(9139):1491–7.CrossRefGoogle Scholar
  35. 35.
    Ontaneda D, Thompson AJ, Fox RJ, et al. Progressive multiple sclerosis: prospects for disease therapy, repair, and restoration of function. Lancet. 2017;389(10076):1357–66.PubMedCrossRefGoogle Scholar
  36. 36.
    Tremlett H, Zhao Y, Joseph J, et al. Relapses in multiple sclerosis are age- and time-dependent. J Neurol Neurosurg Psychiatry. 2008;79(12):1368–74.PubMedCrossRefGoogle Scholar
  37. 37.
    Khademi M, Dring AM, Gilthorpe JD, et al. Intense inflammation and nerve damage in early multiple sclerosis subsides at older age: a reflection by cerebrospinal fluid biomarkers. PLoS One. 2013;8(5):e63172.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Tortorella C, Bellacosa A, Paolicelli D, et al. Age-related gadolinium-enhancement of MRI brain lesions in multiple sclerosis. J Neurol Sci. 2005;239(1):95–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Bar-Or A. The immunology of multiple sclerosis. Semin Neurol. 2008;28:29–45.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Tobin W, Weinshenker BG. Stopping immunomodulatory medications in MS: frequency, reasons, and consequences. Mult Scler Relat Disord. 2015;4:437–43.PubMedCrossRefGoogle Scholar
  41. 41.
    Birnbaum G. Stopping disease modifying-therapy in nonrelapsing multiple sclerosis: experience from a clinical practice. Int J MS Care. 2017;9(1):11–4.CrossRefGoogle Scholar
  42. 42.
    Bonenfant J, Bajeux E, Deburghgraeve V, et al. Can we stop immunomodulatory treatments in secondary progressive multiple sclerosis? Eur J Neurol. 2017;24(2):237–44.PubMedCrossRefGoogle Scholar
  43. 43.
    Kister I, Spelman T, Alroughani R, et al. Discontinuing disease-modifying therapy in MS after a prolonged relapse-free period: a propensity score-matched study. J Neurol Neurosurg Psychiatry. 2016;87(10):1133–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Bsteh G, Feige J, Ehling R, et al. Discontinuation of disease-modifying therapies in multiple sclerosis – clinical outcome and prognostic factors. Mult Scler. 2017;23(9):1241–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Vellinga MM, Castelijns JA, Barkhof F, et al. Postwithdrawal rebound increase in T2 lesional activity in natalizumab-treated MS patients. Neurology. 2008;70(132):1150–1.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Hatcher SE, Waubant E, Nourbakhsh B, et al. Rebound syndrome in patients with multiple sclerosis after cessation of fingolimod treatment. JAMA Neurol. 2016;73(7):790–4.CrossRefGoogle Scholar
  47. 47.
    Montalban X, Hauser SL, Kappos L, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376:209–20.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Kappos L. Efficacy and safety of siponimod in secondary progressive multiple sclerosis: results of the placebo-controlled, double-blind, phase III EXPAND study. Neurology. 2017;88:CT.002.CrossRefGoogle Scholar
  49. 49.
    Giovannoni G, Hawkes C, Waubant E, Lublin F. The ‘field hypothesis’: rebound activity after stopping disease-modifying therapies. Mult Scler Relat Disord. 2017;15:A1.PubMedCrossRefGoogle Scholar
  50. 50.
    Beran RG, Hegazi Y, Schwartz RS, Cordato DJ. Rebound exacerbation multiple sclerosis following cessation of oral treatment. Mult Scler Relat Disord. 2013;2(3):252–5.CrossRefGoogle Scholar
  51. 51.
    Harmel P, Schlunk F, Harms L. Fulminant rebound of relapsing-remitting multiple sclerosis after discontinuation of dimethyl fumarate: a case report. Mult Scler. 2018;24(8):1131–3.PubMedCrossRefGoogle Scholar
  52. 52.
    Yamout BI, Said M, Hannoun S, Zeineddine M, Massouh J, Khoury SJ. Rebound syndrome after teriflunomide cessation in a patient with multiple sclerosis. J Neurol Sci. 2017;380:79–81.PubMedCrossRefGoogle Scholar
  53. 53.
    Frau J, Sormani MP, Signori A, et al. Clinical activity after fingolimod cessation: disease reactivation or rebound? Eur J Neurol. 2018;25(10):1270–5.CrossRefGoogle Scholar
  54. 54.
    Vermersch P, Radue EW, Putzki N, Ritter S, Merschhemke M, Freedman MS. A comparison of multiple sclerosis disease activity after discontinuation of fingolimod and placebo. Mult Scler J Exp Transl Clin. 2017;3:2055217317730096–3. Accessed 16 Sep 2018.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Sangalli F, Moiola L, Ferrè L, et al. Long-term management of natalizumab discontinuation in a large monocentric cohort of multiple sclerosis patients. Mult Scler Relat Disord. 2014;3(4):520–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Gueguen A, Roux P, Deschamps R, et al. Abnormal inflammatory activity returns after natalizumab cessation in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2014;85(9):1038–40.PubMedCrossRefGoogle Scholar
  57. 57.
    Gündüz T, Kürtüncü M, Eraksoy M. Severe rebound after withdrawal of fingolimod treatment in patients with multiple sclerosis. Mult Scler Relat Disord. 2017;11:1–3.PubMedCrossRefGoogle Scholar
  58. 58.
    Serafini B, Zandee S, Rosicarelli B, et al. Epstein-Barr virus-associated immune reconstitution inflammatory syndrome as possible cause of fulminant multiple sclerosis relapse after natalizumab interruption. J Neuroimmunol. 2018;319:9–12.PubMedCrossRefGoogle Scholar
  59. 59.
    Serafini B, Scorsi E, Rosicarelli B, Rigau V, Thouvenot E, Aloisi F. Massive intracerebral Epstein-Barr virus reactivation in lethal multiple sclerosis relapse after natalizumab withdrawal. J Neuroimmunol. 2017;307:14–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Larochelle C, Metz I, Lécuyer MA, et al. Immunological and pathological characterization of fatal rebound MS activity following natalizumab withdrawal. Mult Scler. 2017;23(1):72–81.PubMedCrossRefGoogle Scholar
  61. 61.
    Cobo-Calvo Á, Figueras A, Bau L, et al. Leukocyte adhesion molecule dynamics after natalizumab withdrawal in multiple sclerosis. Clin Immunol. 2016;171:18–24.PubMedCrossRefGoogle Scholar
  62. 62.
    Giacomini PS. Rebound disease in multiple sclerosis. Mult Scler. 2018;24(8):1137–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Mulero P, Neri MJ, Rodriguez M, Arenillas JF, Téllez N. Immune reconstitution inflammatory syndrome and natalizumab–is it possible before removing the drug? Mult Scler Relat Disord. 2014;3(5):659–61.PubMedCrossRefGoogle Scholar
  64. 64.
    Haas J, Schneider K, Schwarz A, et al. Th17 cells: a prognostic marker for MS rebound after natalizumab cessation? Mult Scler. 2017;23(1):114–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Sánchez P, Meca-Lallana V, Vivancos J. Tumefactive multiple sclerosis lesions associated with fingolimod treatment: report of 5 cases. Mult Scler Relat Disord. 2018;25:95–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Voskuhl R. Rebound relapses after ceasing another disease-modifying treatment in patients with multiple sclerosis: are there lessons to be learned? JAMA Neurol. 2016;73(7):775–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Sato K, Niino M, Kawashima A, Yamada M, Miyazaki Y, Fukazawa T. Disease exacerbation after the cessation of fingolimod treatment in Japanese patients with multiple sclerosis. Intern Med. 2018;57(18):2647–55.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Giordana MT, Cavalla P, Uccelli A, et al. Overexpression of sphingosine-1-phosphate receptors on reactive astrocytes drives neuropathology of multiple sclerosis rebound after fingolimod discontinuation. Mult Scler. 2018;24(8):1133–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Bernard-Valnet R, Pignolet B, Biotti D, et al. Unexpected high multiple sclerosis activity after switching from fingolimod to alemtuzumab. Mult Scler Relat Disord. 2018;25:216–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Uphaus T, Oberwittler C, Groppa S, Zipp F, Bittner S. Disease reactivation after switching from natalizumab to daclizumab. J Neurol. 2017;264(12):2491–4.CrossRefGoogle Scholar
  71. 71.
    Giovannoni G, Marta M, Davis A, Turner B, Gnanapavan S, Schmierer K. Switching patients at high risk of PML from natalizumab to another disease-modifying therapy. Pract Neurol. 2016;16(5):389–93.PubMedCrossRefGoogle Scholar
  72. 72.
    Lo Re M, Capobianco M, Ragonese P, et al. Natalizumab discontinuation and treatment strategies in patients with multiple sclerosis (MS): a retrospective study from two Italian MS Centers. Neurol Ther. 2015;4(2):147–57.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Calabrese M, Pitteri M, Farina G, et al. Dimethyl fumarate: a possible exit strategy from natalizumab treatment in patients with multiple sclerosis at risk for severe adverse events. J Neurol Neurosurg Psychiatry. 2017;88(12):1073–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Patti F, Leone C, Zappia M. Clinical and radiologic rebound after discontinuation of natalizumab therapy in a highly active multiple sclerosis patient was not halted by dimethyl-fumarate: a case report. BMC Neurol. 2015;15:252.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Alvarez-Gonzalez C, Adams A, Mathews J, et al. Cladribine to treat disease exacerbation after fingolimod discontinuation in progressive multiple sclerosis. Ann Clin Transl Neurol. 2017;4(7):506–11.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Longbrake EE, Kantor D, Pawate S, et al. Effectiveness of alternative dose fingolimod for multiple sclerosis. Neurol Clin Pract. 2018;8(2):102–7.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Tanak M, Park K, Tanaka K. Reduced fingolimod dosage treatment for patients with multiple sclerosis and lymphopenia or neutropenia. Mult Scler. 2013;19:1244–5.CrossRefGoogle Scholar
  78. 78.
    Yamout BI. Safety and efficacy of reduced fingolimod dosage treatment. J Neuroimmunol. 2015;285:13–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Zhovtis RL, Frohman TC, Foley J, et al. Extended interval dosing of natalizumab in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2016;87:885–9.CrossRefGoogle Scholar
  80. 80.
    Bomprezzi R, Pawate S. Extended interval dosing of natalizumab: a two-center, 7-year experience. Ther Adv Neurol Disord. 2014;7(5):227–31.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Chan C, Siu R, Mellsop N, et al. Extended interval dosing of natalizumab in MS; a New Zealand experience. Neurology. 2018;90(15):6.351.Google Scholar
  82. 82.
    Herbert J, Zhovtis L, Tornatore C, et al. Multicenter retrospective study of extended dosing of natalizumab in multiple sclerosis: a strategy for mitigating risk of progressive multifocal leukoencephalopathy while maintaining efficacy. Neurology. 2014;82(10):2.251.Google Scholar
  83. 83.
    Ryerson LZ, Foley J, Chang I, et al. Natalizumab extended interval dosing (EID) is associated with a significant reduction in progressive multifocal leukoencephalopathy (PML) risk compared with standard interval dosing (SID) in the Touch® prescribing program. J Neurol Neurosurg Psychiatry. 2018;89:A29.CrossRefGoogle Scholar
  84. 84.
    Weinstock-Guttman B, Hagemeier J, Kavak KS, et al. Randomised natalizumab discontinuation study: taper protocol may prevent disease reactivation. J Neurol Neurosurg Psychiatry. 2016;87(9):937–43.PubMedCrossRefGoogle Scholar
  85. 85.
    Schoergenhofer C, Schwameis M, Firbas C, et al. Single, very low rituximab doses in healthy volunteers – a pilot and a randomized trial: implications for dosing and biosimilarity testing. Sci Rep. 2018;8:124.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Salzer J, Svenningsson R, Alping P, et al. Rituximab in multiple sclerosis: a retrospective observational study on safety and efficacy. Neurology. 2016;87(20):2074–81.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Memon AB, Javed A, Caon C, et al. Long-term safety of rituximab induced peripheral B-cell depletion in autoimmune neurological diseases. PLoS ONE. 2018;13(1):e0190425. Scholar
  88. 88.
    Avasarala J. Anti-CD20 cell therapies in multiple sclerosis – a fixed dosing schedule for ocrelizumab is overkill. Drug Target Insights. 2017;11:1177392817737515.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Anton R, Haas M, Arlett P, et al. Drug-induced progressive multifocal leukoencephalopathy: European regulators’ perspective. Clin Pharmacol Ther. 2017;102(2):283–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Pavlovic D, Patera AC, Nyberg F, et al. Progressive multifocal leukoencephalopathy: current treatment options and future perspectives. Ther Adv Neurol Disord. 2015;8(6):255–73.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91. First online: 25 Nov 2014, update 16 Jan 2016.
  92. 92. First online: 4 Aug 2015, update 6 Mar 2018.
  93. 93.
    Biogen Idec. Tysabri (natalizumab) postmarketing safety update. TY-US-0113(11). 2016.
  94. 94.
    Biogen Inc. Tysabri prescribing information (revised 08/2017). Cambridge, MA: Biogen Inc; 2017.Google Scholar
  95. 95.
    Tyler KL, Vollmer TL. To PLEX or not to PLEX in natalizumab-associated PML. Neurology. 2017;88:1108–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Vermersch P, Kappos L, Gold R, et al. Clinical outcomes of natalizumab-associated progressive multifocal leukoencephalopathy. Neurology. 2011;76(20):1697–704.PubMedCrossRefGoogle Scholar
  97. 97.
    Williamson EML, Berger JR. Diagnosis and treatment of progressive multifocal leukoencephalopathy associated with multiple sclerosis therapies. Neurotherapeutics. 2017;14:961–73.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Ho P, Koendgen H, Campbell N, et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: a retrospective analysis of data from four clinical studies. Lancet Neurol. 2017;16:925–33.PubMedCrossRefGoogle Scholar
  99. 99.
    Berger JR. Classifying PML risk with disease modifying therapies. Mult Scler Relat Disord. 2017;12:59–63.CrossRefGoogle Scholar
  100. 100.
    Khatri BO, Man S, Giovannoni G, et al. Effect of plasma exchange in accelerating natalizumab clearance and restoring leukocyte function. Neurology. 2009;72(5):402–9.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Landi D, Rossi ND, Zagaglia S, et al. No evidence of beneficial effects of plasmapheresis in natalizumab-associated PML. Neurology. 2017;88(12):1144–52.PubMedCrossRefGoogle Scholar
  102. 102.
    Scarpazza C, Prosperini L, Rossi ND, et al. To do or not to do? Plasma exchange and timing of steroid administration in progressive multifocal leukoencephalopathy. Ann Neurol. 2017;82:697–705.PubMedCrossRefGoogle Scholar
  103. 103.
    Stuve O, Marta CM, Bat-Or A, et al. Altered CD4+/CD8+ T-cell ratios in cerebrospinal fluid of natalizumab-treated patients with multiple sclerosis. Arch Neurol. 2006;63(10):1383–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Wattjes MP, Wijburg MT, Vennegoor A, et al. MRI characteristics of early PML-IRIS after natalizumab treatment in patients with MS. J Neurol Neurosurg Psychiatry. 2016;87(8):879–84.PubMedCrossRefGoogle Scholar
  105. 105.
    Maillart E, Vidal J, Brassat D, et al. Natalizumab-PML survivors with subsequent MS treatment. Neurol Neuroimmunol Neuroinflamm. 2017;4(3):e346.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Houtchens M. Multiple sclerosis and pregnancy. Clin Obstet Gynecol. 2013;56(2):342–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Voskuhl R, Momtazee C. Pregnancy: effect on multiple sclerosis, treatment considerations, and breastfeeding. Neurotherapeutics. 2017;14(4):974–84.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Brookings William LM. Management of multiple sclerosis during pregnancy. Prog Neurol Psychiatry. 2009;13(6):9–11.CrossRefGoogle Scholar
  109. 109.
    Alroughani R, Alowayesh MS, Ahmed SF, Behbehani R, Al-Hashel J. Relapse occurrence in women with multiple sclerosis during pregnancy in the new treatment era. Neurology. 2018;90(10):e840–e6.PubMedCrossRefGoogle Scholar
  110. 110.
    Siroos B, Harirchian MH. Multiple sclerosis and pregnancy; what a neurologist may be asked for? Iran J Neurol. 2014;13(2):57–63.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Daroff RB, Fenichel GM, Jankovic J, Mazziotta J. Bradley’s neurology in clinical practice. 6th ed. Bridgewater: Elsevier Health Sciences; 2012. p. 1284–310.Google Scholar
  112. 112.
    Confavreux C, Hutchinson M, Hours MM, et al. Rate of pregnancy-related relapse in multiple sclerosis. N Eng J Med. 1998;339:285–91.CrossRefGoogle Scholar
  113. 113.
    Houtchens MK, Kaplan TB. Reproductive issues in MS. Semin Neurol. 2017;37(6):632–42.PubMedCrossRefGoogle Scholar
  114. 114.
    Dahl J, Myhr KM, Daltveit AK, et al. Pregnancy, delivery and birth outcome in women with multiple sclerosis. Neurology. 2005;65:1961–3.PubMedCrossRefGoogle Scholar
  115. 115.
    Bateman AM, Goldish GD. Autonomic dysreflexia in multiple sclerosis. J Spinal Cord Med. 2002;25:40–2.PubMedCrossRefGoogle Scholar
  116. 116.
    Lu E, Wang BW, Guimond C, Synnes A, Sadovnick D, Tremlett H. Disease-modifying drugs for multiple sclerosis in pregnancy: a systematic review. Neurology. 2012;79(11):1130–5.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Karlsson G, Francis G, Koren G, et al. Pregnancy outcomes in the clinical development program of fingolimod in multiple sclerosis. Neurology. 2014;82(08):674–80.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Gold R, Phillips JT, Havrdova E, et al. Delayed-release dimethyl fumarate and pregnancy: preclinical studies and pregnancy out- comes from clinical trials and postmarketing experience. Neurol Ther. 2015;4(02):93–104.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Houtchens MK, Sadovnick AD. Health issues in women with multiple sclerosis. Vienna: Springer; 2017.CrossRefGoogle Scholar
  120. 120.
    Coyle PK. Management of women with multiple sclerosis through pregnancy and after childbirth. Ther Adv Neurol Disorder. 2016;9(03):198–210.CrossRefGoogle Scholar
  121. 121.
    Chakravarty EF, Murray ER, Kelman A, Farmer P. Pregnancy out- comes after maternal exposure to rituximab. Blood. 2011;117(05):1499–506.PubMedCrossRefGoogle Scholar
  122. 122.
    Greenberger PA. Pharmacokinetics of prednisolone transfer to breast milk. Clin Pharmacol Ther. 1993;53:324.PubMedCrossRefGoogle Scholar
  123. 123.
    Achiron A, KishnerT DM, et al. Effect of intravenous immunoglobulin treatment on pregnancy and postpartum related relapses in multiple sclerosis. J Neurol. 2004;251(9):1133–7.PubMedCrossRefGoogle Scholar
  124. 124.
    Nelson LM, Franklin GM, Jones MC. Risk of multiple sclerosis exacerbation during pregnancy and breastfeeding. JAMA. 1988;259(23):3441–3.PubMedCrossRefGoogle Scholar
  125. 125.
    Langer-Gould A, Huang SM, Gupta R, et al. Exclusive breastfeeding and the risk of postpartum relapses in women with multiple sclerosis. Arch Neurol. 2009;66(8):958–63.PubMedCrossRefGoogle Scholar
  126. 126.
    Potter D. The propagation, characterisation and optimisation of cannabis sativa L as a phytopharmaceutical. JP MlBiol CBiol FLS CMIOSH.Google Scholar
  127. 127.
    Da Rovare VP, Magalhaes GPA, Jardini GDA, et al. Cannabinoids for spasticity due to multiple sclerosis or paraplegia: a systemic review and meta-analysis of randomized clinical trials. Complement Ther Med. 2017;34:170–85.PubMedCrossRefGoogle Scholar
  128. 128.
    Clark AJ, Ware MA, Yaser E, et al. Patterns of cannabis use among patients with multiple sclerosis. Neurology. 2004;62(11):2098–100.PubMedCrossRefGoogle Scholar
  129. 129.
    Feinstein A, Banwell E, Pavisian B. What to make of cannabis and cognition in MS: in search of clarity amidst the haze. Mult Scler. 2015;21(14):1755–60.PubMedCrossRefGoogle Scholar
  130. 130.
    Koppel BS, Brust JCM, Fife T, et al. Systemic review: efficacy and safety of medical marijuana in selected neurologic disorders. Neurology. 2014;82:1556–63.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Zajicek JP, Apostu VI. Role of cannabinoids in multiple sclerosis. CNS Drugs. 2011;25(3):187–201.PubMedCrossRefGoogle Scholar
  132. 132.
    Rocha FC, Dos Santos Junior JG, Stefano SC, et al. Systematic review of the literature on clinical and experimental trials on the antitumor effects of cannabinoids in gliomas. J Neuro-Oncol. 2014;116(1):11–24.CrossRefGoogle Scholar
  133. 133.
    Glass M, Faull RL, Dragunow M. Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience. 1997;77(2):299–318.PubMedCrossRefGoogle Scholar
  134. 134.
    Howlett AC, Barth F, Bonner TI, et al. International Union of Pharmacology, XXVII: classification of cannabinoid receptors. Pharmacol Rev. 2002;54:161–202.PubMedCrossRefGoogle Scholar
  135. 135.
    Arévalo-Martin A, Vela JM, Molina-Holgado E, et al. Therapeutic action of cannabinoids in a murine model of multiple sclerosis. J Neurosci. 2003;23(7):2511–6.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Nielsen S, Germanos R, Weier M, et al. The use of cannabis and cannabinoids in treating symptoms of multiple sclerosis: a systemic review of reviews. Curr Neurol Neurosci Rep. 2018;18(2):8.PubMedCrossRefGoogle Scholar
  137. 137.
    Whiting PF, Wolff RF, Deshpande S, et al. Cannabinoids for medical use: a systemic review and meta-analysis. JAMA. 2015;313:2456–73.PubMedCrossRefGoogle Scholar
  138. 138.
    Giacoppo S, Bramanti P, Mazzon E. Sativex in the management of multiple sclerosis-related spasticity: an overview of the last decade of clinical evaluation. Mult Scler Relat Disord. 2017;17:22–31.PubMedCrossRefGoogle Scholar
  139. 139.
    Markovà J, Essner U, Akmaz B, et al. Sativex® as add-on therapy vs. further optimized first-line ANTispastics (SAVANT) in resistant multiple sclerosis spasticity: a double-blind, placebo-controlled randomised clinical trial. Int J Neurosci. 2018;24:1–26.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Syed A. Rizvi
    • 1
    Email author
  • Joshua A. Stone
    • 2
  • Saima T. Chaudhry
    • 2
  • Nichola Haddad
    • 3
  • Brian Wong
    • 4
  • Jennifer O. Grimes
    • 3
  1. 1.Rhode Island Hospital and Alpert Medical School of Brown University, Brown NeurologyProvidenceUSA
  2. 2.MS Fellow, Brown NeurologyProvidenceUSA
  3. 3.Alpert Warren Medical School of Brown UniversityProvidenceUSA
  4. 4.Department of NeurologyHartford Healthcare, University of Connecticut School of MedicineSouthingtonUSA

Personalised recommendations