Liver Diseases pp 587-598 | Cite as

Molecular Targets in Liver Disease

  • Andrea FerrignoEmail author
  • Laura Giuseppina Di Pasqua
  • Mariapia Vairetti


In the last decades, as the knowledge about the regulation of cellular processes has been growing, many new pharmacological targets have been emerging as promising tools for the management of liver disease. Protein kinases such as vascular endothelial growth factor receptor, platelet derived growth factor receptor, hepatocyte growth factor receptor and RAF kinases, are among the most researched pharmacological targets for the treatment of hepatocellular carcinoma and many small-molecule multiple kinase inhibitors are currently under development. Farnesoid X receptor, a nuclear receptor involved in the regulation of bile acid synthesis and transport has recently emerged as a pharmacological target for the treatment of primary cholangitis; its potential in non alcoholic fatty liver disease and non alcoholic steatohepatitis is also under evaluation in Phase III studies. Peroxisome proliferator-activated receptor α is a ligand-activated nuclear receptor enlisted among the main regulators of lipid metabolism in the liver, although it has other critical functions, including the regulation of canalicular transporters. Its ligands have been traditionally used as hypolipidemic agents; however, fibrates, a family of synthetic peroxisome proliferator-activated receptor agonists currently used in the treatment of primary cholangitis, are believed to work by modulating biliary secretion. Novel therapeutic targets are currently being studied and new drugs are under development. The Takeda G protein-coupled receptor 5 is involved in the progression of inflammatory processes in Kupffer cells and hepatic stellate cells. In cholangiocytes it promotes protective mechanisms against biliary toxicity; however, its overexpression promotes cholangiocyte proliferation potentially developing into cholangiocarcinoma. Immune checkpoint proteins are also interesting novel pharmacological targets. Programmed cell death protein 1 is expressed on the surface of hepatocellular carcinoma cells and promotes self-tolerance suppressing the activity of the immune system. Checkpoint inhibitors such as nivolumab have been introduced in the therapy of hepatocellular carcinoma even though they are currently under development, because of the promising results of Phase II studies.


Hepatocellular carcinoma (HCC) Non-alcoholic fatty liver disease (NAFLD) Non-alcoholic steatohepatitis (NASH) Primary cholangitis Farnesoid X receptor (FXR) Peroxisome proliferator-activated receptor (PPARα) Vascular endothelial growth factor receptor (VEGFR) Platelet-derived growth factor receptor (PDGFR) cMET RAF Metabotropic glutamate receptor 5 (mGluR5) Takeda G protein-coupled receptor 5 (TGR5) Programmed cell death protein-1 (PD-1) Small-molecule multiple kinase inhibitors 


  1. 1.
    Chen C, Lou T. Hypoxia inducible factors in hepatocellular carcinoma. Oncotarget. 2017;8:46691–703.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Sia D, Alsinet C, Newell P, Villanueva A. VEGF signaling in cancer treatment. Curr Pharm Des. 2014;20:2834–42.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Simons M, Gordon E, Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 2016;17:611–25.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Heldin C-H. Targeting the PDGF signaling pathway in the treatment of non-malignant diseases. J Neuroimmune Pharmacol. 2014;9:69–79.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol. 2017;66:1300–12.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Farooqi AA, Siddik ZH. Platelet-derived growth factor (PDGF) signalling in cancer: rapidly emerging signalling landscape. Cell Biochem Funct. 2015;33:257–65.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Gramantieri L, Granito A, Guidetti E. c-MET receptor tyrosine kinase as a molecular target in advanced hepatocellular carcinoma. J Hepatocell Carcinoma. 2015;2:29.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Firtina Karagonlar Z, Koc D, Iscan E, Erdal E, Atabey N. Elevated hepatocyte growth factor expression as an autocrine c-Met activation mechanism in acquired resistance to sorafenib in hepatocellular carcinoma cells. Cancer Sci. 2016;107:407–16.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Wu X, Yang Y, Xu Z, Li J, Yang B, Feng N, Zhang Y, Wang S. Raf kinase inhibitor protein mediated signaling inhibits invasion and metastasis of hepatocellular carcinoma. Biochim Biophys Acta. 2016;1860:384–91.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lavoie H, Therrien M. Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol. 2015;16:281–98.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Galle PR, Forner A, Llovet JM, Mazzaferro V, Piscaglia F, Raoul J-L, Schirmacher P, Vilgrain V. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69:182–236.CrossRefGoogle Scholar
  12. 12.
    Keating GM. Sorafenib: a review in hepatocellular carcinoma. Target Oncol. 2017;12:243–53.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Oikonomopoulos G, Aravind P, Sarker D. Lenvatinib: a potential breakthrough in advanced hepatocellular carcinoma? Future Oncol. 2016;12:465–76.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Yakes FM, Chen J, Tan J, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10:2298–308.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Gadaleta RM, Magnani L. Nuclear receptors and chromatin: an inducible couple. J Mol Endocrinol. 2014;52:R137–49.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Lazar MA. Maturing of the nuclear receptor family. J Clin Invest. 2017;127:1123–5.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Huang C, Wang J, Hu W, Wang C, Lu X, Tong L, Wu F, Zhang W. Identification of functional farnesoid X receptors in brain neurons. FEBS Lett. 2016;590:3233–42.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Massafra V, Pellicciari R, Gioiello A, van Mil SWC. Progress and challenges of selective Farnesoid X Receptor modulation. Pharmacol Ther. 2018; Scholar
  19. 19.
    Goldstein J, Levy C. Novel and emerging therapies for cholestatic liver diseases. Liver Int. 2018; Scholar
  20. 20.
    Goto T, Itoh M, Suganami T, Kanai S, Shirakawa I, Sakai T, Asakawa M, Yoneyama T, Kai T, Ogawa Y. Obeticholic acid protects against hepatocyte death and liver fibrosis in a murine model of nonalcoholic steatohepatitis. Sci Rep. 2018;8:8157.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Sepe V, Distrutti E, Fiorucci S, Zampella A. Farnesoid X receptor modulators 2014-present: a patent review. Expert Opin Ther Pat. 2018;28:351–64.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Tanaka N, Aoyama T, Kimura S, Gonzalez FJ. Targeting nuclear receptors for the treatment of fatty liver disease. Pharmacol Ther. 2017;179:142–57.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Pelaia G, Vatrella A, Busceti MT, Fabiano F, Terracciano R, Matera MG, Maselli R. Molecular and cellular mechanisms underlying the therapeutic effects of budesonide in asthma. Pulm Pharmacol Ther. 2016;40:15–21.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Hirschfield GM, Beuers U, Corpechot C, Invernizzi P, Jones D, Marzioni M, Schramm C. EASL clinical practice guidelines: the diagnosis and management of patients with primary biliary cholangitis. J Hepatol. 2017;67:145–72.CrossRefGoogle Scholar
  26. 26.
    European Association for the Study of the Liver. EASL clinical practice guidelines: autoimmune hepatitis. J Hepatol. 2015;63:971–1004.CrossRefGoogle Scholar
  27. 27.
    Deutschmann K, Reich M, Klindt C, Dröge C, Spomer L, Häussinger D, Keitel V. Bile acid receptors in the biliary tree: TGR5 in physiology and disease. Biochim Biophys Acta. 2018;1864:1319–25.CrossRefGoogle Scholar
  28. 28.
    Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017;18:e731–41.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Ferrigno A, Berardo C, Di Pasqua LG, Siciliano V, Richelmi P, Vairetti M. Localization and role of metabotropic glutamate receptors subtype 5 in the gastrointestinal tract. World J Gastroenterol. 2017;23:4500.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ferrigno A, Berardo C, Di Pasqua LG, Siciliano V, Richelmi P, Nicoletti F, Vairetti M. Selective blockade of the metabotropic glutamate receptor mGluR5 protects mouse livers in in vitro and ex vivo models of ischemia reperfusion injury. Int J Mol Sci. 2018; Scholar
  31. 31.
    Kudo M. Signaling pathway/molecular targets and new targeted agents under development in hepatocellular carcinoma. World J Gastroenterol. 2012;18:6005.PubMedPubMedCentralCrossRefGoogle Scholar

Further Reading

  1. Barnes PJ. Biochemical basis of asthma therapy. J Biol Chem. 2011;286:32899–905.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Brennan DF, Dar AC, Hertz NT, Chao WCH, Burlingame AL, Shokat KM, Barford D. A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK. Nature. 2011;472:366–9.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Demoulin J-B, Montano-Almendras CP. Platelet-derived growth factors and their receptors in normal and malignant hematopoiesis. Am J Blood Res. 2012;2:44–56.PubMedPubMedCentralGoogle Scholar
  5. Derendorf H, Nave R, Drollmann A, Cerasoli F, Wurst W. Relevance of pharmacokinetics and pharmacodynamics of inhaled corticosteroids to asthma. Eur Respir J. 2006;28:1042–50.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Dougherty MK, Müller J, Ritt DA, Zhou M, Zhou XZ, Copeland TD, Conrads TP, Veenstra TD, Lu KP, Morrison DK. Regulation of Raf-1 by direct feedback phosphorylation. Mol Cell. 2005;17:215–24.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219–42.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ito K, Yamamura S, Essilfie-Quaye S, Cosio B, Ito M, Barnes PJ, Adcock IM. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-κB suppression. J Exp Med. 2006;203:7–13.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Jing Y, Ma N, Fan T, et al. Tumor necrosis factor-alpha promotes tumor growth by inducing vascular endothelial growth factor. Cancer Investig. 2011;29:485–93.Google Scholar
  10. Laimer D, Dolznig H, Kollmann K, et al. PDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas. Nat Med. 2012;18:1699–704.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271:1734–6.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141:1117–34.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Leonard TA, Hurley JH. Regulation of protein kinases by lipids. Curr Opin Struct Biol. 2011;21:785–91.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B. Identification of a nuclear receptor for bile acids. Science. 1999;284:1362–5.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Organ SL, Tsao M-S. An overview of the c-MET signaling pathway. Ther Adv Med Oncol. 2011;3:S7–S19.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Roskoski R. RAF protein-serine/threonine kinases: structure and regulation. Biochem Biophys Res Commun. 2010;399:313–7.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Rushworth LK, Hindley AD, O’Neill E, Kolch W. Regulation and role of Raf-1/B-Raf heterodimerization. Mol Cell Biol. 2006;26:2262–72.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Sakurai Y, Ohgimoto K, Kataoka Y, Yoshida N, Shibuya M. Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc Natl Acad Sci U S A. 2005;102:1076–81.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Trusolino L, Bertotti A, Comoglio PM. MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol. 2010;11:834–48.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res. 2011;2:236–40.PubMedPubMedCentralCrossRefGoogle Scholar
  21. van Uden P, Kenneth NS, Rocha S. Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. Biochem J. 2008;412:477–84.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Wang Y-D, Chen W-D, Moore DD, Huang W. FXR: a metabolic regulator and cell protector. Cell Res. 2008;18:1087–95.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Zebisch A, Troppmair J. Back to the roots: the remarkable RAF oncogene story. Cell Mol Life Sci. 2006;63:1314–30.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Zhu J, Balan V, Bronisz A, Balan K, Sun H, Leicht DT, Luo Z, Qin J, Avruch J, Tzivion G. Identification of Raf-1 S471 as a novel phosphorylation site critical for Raf-1 and B-Raf kinase activities and for MEK binding. Mol Biol Cell. 2005;16:4733–44.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andrea Ferrigno
    • 1
    Email author
  • Laura Giuseppina Di Pasqua
    • 1
  • Mariapia Vairetti
    • 1
  1. 1.Department of Internal Medicine and Therapeutics, Cellular and Molecular Pharmacology and Toxicology UnitUniversity of PaviaPaviaItaly

Personalised recommendations