Liver Diseases pp 523-531 | Cite as

MR Elastography and Functional MRI of the Liver

  • Ioana G. Lupescu
  • Mugur Cristian Grasu
  • Radu Lucian Dumitru


Hepatobiliary Magnetic resonance imaging (MRI) has progressed in the last decade, actually combining morphological and functional data analysis concerning liver parenchyma and focal lesion(s). A correct liver MRI protocol combining morphological and functional sequences allow to detect and characterize liver diffuse pathologies (such as steatosis, hemochromatosis, liver fibrosis, sinusoidal obstructive syndrome, etc.) and/or different type of nodules developed into a normal liver parenchyma or altered liver tissue (e.g. chronic hepatitis, steatofibrosis, liver cirrhosis). Magnetic Resonance Elastography (MRE) is a non-invasive and accurate alternative imaging technique to invasive liver biopsy used in our days to diagnose, quantify and follow-up liver fibrosis. Diffusion weighted imaging (DWI) plays a major role in liver lesions detection, in particular in the detection of metastases in patients with known cancer but also provides information concerning the detection and characterization of liver damage (e.g. liver fibrosis) and for measuring the therapeutic response. MRI evaluation of the liver with specific Gadolinium based contrast agents offer a better detection and characterization of liver lesions having additional advantages to non-specific extracellular MRI contrast agents such as a higher and “specific” enhancement of liver parenchyma correlated with hepatocytes function, and an optimal evaluation of the biliary tree.


MR elastography Functional MRI Multiparametric MRI Diffusion weighted imaging Hepato-specific Gadolinium based contrast agents Liver pathology Liver fibrosis Liver cirrhosis Hepatocytes dysfunction 


  1. 1.
    Babu AS, Wells ML, Teytelboym OM, et al. Elastography in chronic liver disease: modalities, techniques, limitations, and future directions. Radiographics. 2016;36:1987–2006.CrossRefGoogle Scholar
  2. 2.
    Tang A, Cloutier G, Szeverenyi NM, Sirlin CB. Ultrasound elastography and MR elastography for assessing liver fibrosis: Part 1, Principles and techniques. Am J Roentgenol. 2015;205(1):22–32.CrossRefGoogle Scholar
  3. 3.
    Tang A, Cloutier G, Szeverenyi NM, Sirlin CB. Ultrasound elastography and MR elastography for assessing liver fibrosis: Part 2, Diagnostic performance, confounders, and future directions. Am J Roentgenol. 2015;205(2):33–40.CrossRefGoogle Scholar
  4. 4.
    Venkatesh SK, Yin M, Ehman RL. Magnetic resonance elastography of liver: technique, analysis and clinical applications. J Magn Reson Imaging. 2013;37(3):544–55.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Venkatesh SK, Ehman RL. Magnetic resonance elastography of abdomen. Abdom Imaging. 2015;40:745–59.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Venkatesh SK, Yin M, Takahashi N, Glockner JF, Talwalkar JA, Ehman RL. Non-invasive detection of liver fibrosis: MR imaging features vs. MR elastography. Abdom Imaging. 2015;40(4):766–75.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Serai SD, Yin M, Wang H. Cross-vendor validation of liver magnetic resonance elastography. Abdom Imaging. 2015;40:789–94.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Faria SC, Ganesan K, Mwangi I, et al. MR imaging of liver fibrosis: current state of the art. Radiographics. 2009;29(6):1615–35.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Kennedy P, Wagner M, Castéra L, Hong C-W, et al. Quantitative elastography methods in liver disease: current evidence and future directions. Radiology. 2018;286(3):738–63.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Afdhal N, Bedossa P, Friedrich-Rust M, Han K-H, Pinzani M. EASL-ALEH clinical practice guidelines: non-invasive tests for evaluation of liver disease severity and prognosis. J Hepatol. 2015;63(1):237–64.CrossRefGoogle Scholar
  11. 11.
    Yin M, Glaser KJ, Talwalkar JA, Chen J, Manduca A, Ehman RL. Hepatic MR elastography: clinical performance in a series of 1377 consecutive examinations. Radiology. 2016;278(01):114–24.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Wagner M, Corcuera-Solano I, Lo G, et al. Technical failure of MR elastography examinations of the liver: experience from a large single-center study. Radiology. 2017;284(02):401–12.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Shiha G, Ibrahim A, Helmy A, et al. Asian-Pacific Association for the Study of the Liver (APASL) consensus guidelines on invasive and non-invasive assessment of hepatic fibrosis: a 2016 update. Hepatol Int. 2017;11(01):1–30.CrossRefGoogle Scholar
  14. 14.
    Singh S, Venkatesh SK, Wang Z, et al. Diagnostic performance of magnetic resonance elastography in staging liver fibrosis: a systematic review and meta-analysis of individual participant data. Clin Gastroenterol Hepatol. 2015;13(03):440–51.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Singh S, Venkatesh SK, Loomba R, et al. Magnetic resonance elastography for staging liver fibrosis in non-alcoholic fatty liver disease: a diagnostic accuracy systematic review and individual participant data pooled analysis. Eur Radiol. 2016;26(5):1431–40.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Cui J, Heba E, Hernandez C, et al. Magnetic resonance elastography is superior to acoustic radiation force impulse for the diagnosis of fibrosis in patients with biopsy-proven nonalcoholic fatty liver disease: a prospective study. Hepatology. 2016;63:453–61.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Imajo K, Kessoku T, Honda Y, et al. Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography. Gastroenterology. 2016;150:626–37.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Loomba R, Cui J, Wolfson T, et al. Novel 3D magnetic resonance elastography for the noninvasive diagnosis of advanced fibrosis in NAFLD: a prospective study. Am J Gastroenterol. 2016;111:986–94.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Pavlidea M, Banerjee R, Tunnicliffe EM, et al. Multiparametric magnetic resonance imaging for the assessment of non-alcoholic fatty liver disease severity. Liver Int. 2017;37:1065–73.CrossRefGoogle Scholar
  20. 20.
    Bookwalter CA, Venkatesh SK, John E, Eaton JE, et al. MR elastography in primary sclerosing cholangitis: correlating liver stiffness with bile duct strictures and parenchymal changes. Abdom Radiol. 2018;43:3260–70.CrossRefGoogle Scholar
  21. 21.
    Ichikawa S, Motosugi U, Enomoto N, Onishi H. Magnetic resonance elastography can predict development of hepatocellular carcinoma with longitudinally acquired two-point data. Eur Radiol. 2019;29:1013–21.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Lee DH, Lee M, Chang W. Prognostic role of liver stiffness measurements using magnetic resonance elastography in patients with compensated chronic liver disease. Eur Radiol. 2018;28:3513–21.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Chen J, Yin M, Talwalkar JA, et al. Diagnostic performance of MR elastography and vibration-controlled transient elastography in the detection of hepatic fibrosis in patients with severe to morbid obesity. Radiology. 2017;283(2):418–28.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Yin M, Venkatesh SK. Ultrasound or MR elastography of liver: which one shall I use? Abdom Radiol. 2018;43:1546–51.CrossRefGoogle Scholar
  25. 25.
    Serai SD, Trout AT. Can MR elastography be used to measure liver stiffness in patients with iron overload? Abdom Radiol. 2018; Scholar
  26. 26.
    Donato H, França M, Candelária I, Caseiro-Alves F. Liver MRI: from basic protocol to advanced techniques. Eur J Radiol. 2017;93:30–9.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Van Beers BE, Daire J-L, Garteiser P. New imaging techniques for liver diseases. J Hepatol. 2015;62:690–700.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Neri E, Bali MA, Ba-Ssalamah A, et al. ESGAR consensus statement on liver MR imaging and clinical use of liver-specific contrast agents. Eur Radiol. 2016;26:921–31.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jhaveri K, Cleary S, Audet P, et al. Consensus statements from a multidisciplinary expert panel on the utilization and application of a liver-specific MRI contrast agent (gadoxetic acid). Am J Roentgenol. 2015;204:498–509.CrossRefGoogle Scholar
  30. 30.
    Luciani A, Frédéric Pigneur F. Séquences de diffusion et produits de contraste hépatobiliaires en IRM du foie: les évolutions en cours. POST’U 2017, pp 49–54.Google Scholar
  31. 31.
    Lewis S, Dyvorne H, Cui Y, Taouli B. Diffusion-weighted imaging of the liver: techniques and applications. Magn Reson Imag Clin N Am. 2014;22:373–95.CrossRefGoogle Scholar
  32. 32.
    Ronot M, Clift AK, Vilgrain V, Frilling A. Functional imaging in liver tumours. J Hepatol. 2016;65:1017–30.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Vilgrain V, Esvan M, Ronot M, et al. A meta-analysis of diffusion-weighted and gadoxetic acid-enhanced MR imaging for the detection of liver metastases. Eur Radiol. 2016;26:4595–615.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    França M, Martí-Bonmatí L, Alberich-Bayarri A, et al. Evaluation of fibrosis and inflammation in diffuse liver diseases using intravoxel incoherent motion diffusion-weighted MR imaging. Abdom Radiol. 2017;42(2):468–77.CrossRefGoogle Scholar
  35. 35.
    Schalkx HJ, van Stralen M, Coenegrachts K, et al. Liver perfusion in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI): comparison of enhancement in Gd-BT-DO3A and Gd-EOB-DTPA in normal liver parenchyma. Eur Radiol. 2014;24:2146–56.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Ricke J, Seidensticker M. Molecular imaging and liver function assessment by hepatobiliary MRI. J Hepatol. 2016;65:1081–2.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Nilsson H, Blomqvist L, Douglas L, Nordell A, Janczewska I, Naslund E, et al. Gd-EOB-DTPA-enhanced MRI for the assessment of liver function and volume in liver cirrhosis. Br J Radiol. 2013;86:20120653.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kukuk GM, Schaefer SG, Fimmers R, et al. Hepatobiliary magnetic resonance imaging in patients with liver disease: correlation of liver enhancement with biochemical liver function tests. Eur Radiol. 2014;24:2482–90.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Truhn D, Kuhl CK, Ciritsis A. A new model for MR evaluation of liver function with gadoxetic acid, including both uptake and excretion. Eur Radiol. 2019;29:383–91.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Yoneda N, Matsui O, Ikeno H, et al. Correlation between Gd-EOB-DTPA-enhanced MR imaging findings and OATP1B3 expression in chemotherapy-associated sinusoidal obstruction syndrome. Abdom Imaging. 2015;40:3099–103.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Lee NK, Kim S, Kim GH, et al. Significance of the “delayed hyperintense portal vein sign” in the hepatobiliary phase MRI obtained with Gd-EOB-DTPA. J Magn Reson Imaging. 2012;36:678–85.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Han NY, Park BJ, Sung DJ, et al. Chemotherapy-induced focal hepatopathy in patients with gastrointestinal malignancy: gadoxetic acid-enhanced and diffusion-weighted MR imaging with clinical-pathologic correlation. Radiology. 2014;271:416–20.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Unal E, Karaosmanoğlu AD, Ozmen MN, et al. Hepatobiliary phase liver MR imaging findings after Oxaliplatin-based chemotherapy in cancer patients. Abdom Radiol. 2018;43(9):2321–8.CrossRefGoogle Scholar
  44. 44.
    Zhou Z-P, Long L-L, Qiu W-J, et al. Evaluating segmental liver function using T1 mapping on Gd-EOB-DTPA-enhanced MRI with a 3.0 Tesla. BMC Med Imaging. 2017;17:20.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Ding Y, Rao S-X, Chen C, et al. Assessing liver function in patients with HBV-related HCC: a comparison of T1 mapping on Gd-EOB-DTPA-enhanced MR imaging with DWI. Eur Radiol. 2015;25:1392–8.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ioana G. Lupescu
    • 1
  • Mugur Cristian Grasu
    • 1
  • Radu Lucian Dumitru
    • 1
  1. 1.Radiology, Medical Imaging and Interventional Radiology Department, Fundeni Clinical InstituteUniversity of Medicine and Pharmacy “Carol Davila”BucharestRomania

Personalised recommendations