Liver Diseases pp 381-394 | Cite as

Chronic Liver Failure and Acute-on-Chronic Liver Failure

  • Rita Garcia-Martinez
  • Raquel Diaz-Ruiz
  • Jesus Millan
  • Rafael Bañares


Chronic liver failure (CLF) is the result of persistent liver damage. Given the multifaceted abilities of the organ, CLF is a multisystem progressive disease that evolves from an asymptomatic (compensated) to a clinically manifested phase (decompensated) driven by hemodynamic disturbances and systemic inflammation. Among the whole spectrum, several stages with prognostic relevance have been described. Clinical management of CLF aims to treat primary liver disease, screening, prevent and controlling the complications, and consider liver transplantation (LT) in advanced stages and life-threatening complications. Improvement and reversibility of liver damage and clinical consequences have been described with etiological cure.

Acute-on-chronic liver failure (ACLF) is an acute decompensation characterized by high short-term mortality related to the development of organ failure. Systemic inflammatory response seems to play a key role. Despite its high risk of short-term mortality, it is a very dynamic syndrome and potentially reversible. Management includes early treatment of potential triggers, prevention of progression and support of failed organs and consider for LT. Since there is very limited data on the impact of ACLF on LT outcomes, its clinical applicability remains controversial.


Liver cirrhosis Chronic liver failure Portal hypertension Acute-on-chronic liver failure Liver transplantation Human 



Acute-on-chronic liver failure


Acute kidney injury


Barcelona clinic liver cancer


Bacterial translocation


Compensated advanced chronic liver disease


Chronic liver failure


C-reactive protein


Serum creatinine


Damage-associated molecular pattern


Diabetes mellitus




Glutamine synthetase


Hepatocellular carcinoma


Hepatic encephalopathy


Hepatopulmonary syndrome


Hepatorenal syndrome


Liver transplantation


Large volume paracentesis


Model for end-stage liver disease


Non-alcoholic fatty liver disease


Nonsteroidal anti-inflammatory drugs


Non-selective beta blockers


Pathogen-associated molecular pattern


Portal hypertension


Portopulmonary hypertension


Portosystemic shunts


Spontaneous bacterial peritonitis


Transjugular intrahepatic portosystemic shunt



Conflict of interest: None.


  1. 1.
    Tsochatzis EA, Bosch J, Burroughs AK. Liver cirrhosis. Lancet. 2014;383(9930):1749–61.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Sanyal AJ, Bosch J, Blei A, Arroyo V. Portal hypertension and its complications. Gastroenterology. 2008;134(6):1715–28.PubMedCrossRefGoogle Scholar
  3. 3.
    de Franchis R. Expanding consensus in portal hypertension: report of the Baveno VI consensus workshop: stratifying risk and individualizing care for portal hypertension. J Hepatol. 2015;63(3):743–52.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Golding PL, Smith M, Williams R. Multisystem involvement in chronic liver disease. Studies on the incidence and pathogenesis. Am J Med. 1973;55(6):772–82.PubMedCrossRefGoogle Scholar
  5. 5.
    Minemura M, Tajiri K, Shimizu Y. Systemic abnormalities in liver disease. World J Gastroenterol. 2009;15(24):2960–74.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Thomson MJ, Tapper EB, Lok ASF. Dos and don’ts in the management of cirrhosis: a view from the 21st century. Am J Gastroenterol. 2018;113(7):927–31.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Lens S, Alvarado-Tapias E, Marino Z, et al. Effects of all-oral anti-viral therapy on HVPG and systemic hemodynamics in patients with hepatitis C virus-associated cirrhosis. Gastroenterology. 2017;153(5):1273–83.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Muntaner L, Altamirano JT, Augustin S, et al. High doses of beta-blockers and alcohol abstinence improve long-term rebleeding and mortality in cirrhotic patients after an acute variceal bleeding. Liver Int. 2010;30(8):1123–30.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Di M, Calvaruso V, Ferraro D, et al. Effects of eradicating hepatitis C virus infection in patients with cirrhosis differ with stage of portal hypertension. Gastroenterology. 2016;151(1):130–9.CrossRefGoogle Scholar
  10. 10.
    Luca A, Garcia-Pagan JC, Bosch J, et al. Effects of ethanol consumption on hepatic hemodynamics in patients with alcoholic cirrhosis. Gastroenterology. 1997;112(4):1284–9.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    D'Amico G, Morabito A, D'Amico M, et al. Clinical states of cirrhosis and competing risks. J Hepatol. 2018;68(3):563–76.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Moreau R, Jalan R, Gines P, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology. 2013;144(7):1426, 1437.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Arroyo V, Moreau R, Kamath PS, et al. Acute-on-chronic liver failure in cirrhosis. Nat Rev Dis Primers. 2016;2:16041.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Bosch J, Arroyo V, Betriu A, et al. Hepatic hemodynamics and the renin-angiotensin-aldosterone system in cirrhosis. Gastroenterology. 1980;78(1):92–9.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Bosch J, Pizcueta P, Feu F, Fernandez M, Garcia-Pagan JC. Pathophysiology of portal hypertension. Gastroenterol Clin N Am. 1992;21(1):1–14.Google Scholar
  16. 16.
    Pimpin L, Cortez-Pinto H, Negro F, et al. Burden of liver disease in Europe: epidemiology and analysis of risk factors to identify prevention policies. J Hepatol. 2018;69(3):718–35.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Giannelli V, Di G, Iebba V, et al. Microbiota and the gut-liver axis: bacterial translocation, inflammation and infection in cirrhosis. World J Gastroenterol. 2014;20(45):16795–810.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Acharya C, Sahingur SE, Bajaj JS. Microbiota, cirrhosis, and the emerging oral-gut-liver axis. JCI Insight. 2017;2(19):pii: 94416.CrossRefGoogle Scholar
  19. 19.
    Chen Y, Yang F, Lu H, et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology. 2011;54(2):562–72.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Bajaj JS, Heuman DM, Hylemon PB, et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol. 2014;60(5):940–7.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Wiest R, Lawson M, Geuking M. Pathological bacterial translocation in liver cirrhosis. J Hepatol. 2014;60(1):197–209.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Bauer TM, Steinbruckner B, Brinkmann FE, et al. Small intestinal bacterial overgrowth in patients with cirrhosis: prevalence and relation with spontaneous bacterial peritonitis. Am J Gastroenterol. 2001;96(10):2962–7.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Ponziani FR, Zocco MA, Cerrito L, Gasbarrini A, Pompili M. Bacterial translocation in patients with liver cirrhosis: physiology, clinical consequences, and practical implications. Expert Rev Gastroenterol Hepatol. 2018;12(7):641–56.PubMedCrossRefGoogle Scholar
  24. 24.
    Bajaj JS, Ridlon JM, Hylemon PB, et al. Linkage of gut microbiome with cognition in hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol. 2012;302(1):G168–75.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Runyon BA, Squier S, Borzio M. Translocation of gut bacteria in rats with cirrhosis to mesenteric lymph nodes partially explains the pathogenesis of spontaneous bacterial peritonitis. J Hepatol. 1994;21(5):792–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Bellot P, Garcia-Pagan JC, Frances R, et al. Bacterial DNA translocation is associated with systemic circulatory abnormalities and intrahepatic endothelial dysfunction in patients with cirrhosis. Hepatology. 2010;52(6):2044–52.PubMedCrossRefGoogle Scholar
  27. 27.
    Thalheimer U, Triantos CK, Samonakis DN, Patch D, Burroughs AK. Infection, coagulation, and variceal bleeding in cirrhosis. Gut. 2005;54(4):556–63.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Claria J, Stauber RE, Coenraad MJ, et al. Systemic inflammation in decompensated cirrhosis: characterization and role in acute-on-chronic liver failure. Hepatology. 2016;64(4):1249–64.PubMedCrossRefGoogle Scholar
  29. 29.
    Wiest R, Albillos A, Trauner M, Bajaj JS, Jalan R. Targeting the gut-liver axis in liver disease. J Hepatol. 2017;67(5):1084–103.PubMedCrossRefGoogle Scholar
  30. 30.
    Ishibashi H, Nakamura M, Komori A, Migita K, Shimoda S. Liver architecture, cell function, and disease. Semin Immunopathol. 2009;31(3):399–409.PubMedCrossRefGoogle Scholar
  31. 31.
    Berzigotti A, Seijo S, Reverter E, Bosch J. Assessing portal hypertension in liver diseases. Expert Rev Gastroenterol Hepatol. 2013;7(2):141–55.PubMedCrossRefGoogle Scholar
  32. 32.
    Graham DY, Smith JL. The course of patients after variceal hemorrhage. Gastroenterology. 1981;80(4):800–9.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Villanueva C, Colomo A, Bosch A, et al. Transfusion strategies for acute upper gastrointestinal bleeding. N Engl J Med. 2013;368(1):11–21.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Garcia-Pagan JC, Caca K, Bureau C, et al. Early use of TIPS in patients with cirrhosis and variceal bleeding. N Engl J Med. 2010;362(25):2370–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Procopet B, Giraldez A, Amitrano L, et al. Preemptive-TIPS improves outcome in high-risk variceal bleeding: an observational study. Hepatology. 2019;69(1):282–93.PubMedGoogle Scholar
  36. 36.
    Serste T, Melot C, Francoz C, et al. Deleterious effects of beta-blockers on survival in patients with cirrhosis and refractory ascites. Hepatology. 2010;52(3):1017–22.PubMedCrossRefGoogle Scholar
  37. 37.
    Mandorfer M, Bota S, Schwabl P, et al. Nonselective beta blockers increase risk for hepatorenal syndrome and death in patients with cirrhosis and spontaneous bacterial peritonitis. Gastroenterology. 2014;146(7):1680–90.PubMedCrossRefGoogle Scholar
  38. 38.
    Reiberger T, Mandorfer M. Beta adrenergic blockade and decompensated cirrhosis. J Hepatol. 2017;66(4):849–59.PubMedCrossRefGoogle Scholar
  39. 39.
    Urrunaga NH, Rockey DC. Portal hypertensive gastropathy and colopathy. Clin Liver Dis. 2014;18(2):389–406.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Madonia S, D'Amico G, Traina M, et al. Prognostic indicators of successful endoscopic sclerotherapy for prevention of rebleeding from oesophageal varices in cirrhosis: a long-term cohort study. Dig Liver Dis. 2000;32(9):782–91.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Ripoll C, Groszmann R, Garcia-Tsao G, et al. Hepatic venous pressure gradient predicts clinical decompensation in patients with compensated cirrhosis. Gastroenterology. 2007;133(2):481–8.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    EASL. EASL clinical practice guidelines for the management of patients with decompensated cirrhosis. J Hepatol. 2018;69(2):406–60.CrossRefGoogle Scholar
  43. 43.
    Bernardi M, Caraceni P, Navickis RJ, Wilkes MM. Albumin infusion in patients undergoing large-volume paracentesis: a meta-analysis of randomized trials. Hepatology. 2012;55(4):1172–81.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Garcia-Martinez R, Caraceni P, Bernardi M, Gines P, Arroyo V, Jalan R. Albumin: pathophysiologic basis of its role in the treatment of cirrhosis and its complications. Hepatology. 2013;58(5):1836–46.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Salerno F, Borroni G, Moser P, et al. Survival and prognostic factors of cirrhotic patients with ascites: a study of 134 outpatients. Am J Gastroenterol. 1993;88(4):514–9.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Salerno F, Camma C, Enea M, Rossle M, Wong F. Transjugular intrahepatic portosystemic shunt for refractory ascites: a meta-analysis of individual patient data. Gastroenterology. 2007;133(3):825–34.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Bureau C, Thabut D, Oberti F, et al. Transjugular intrahepatic portosystemic shunts with covered stents increase transplant-free survival of patients with cirrhosis and recurrent ascites. Gastroenterology. 2017;152(1):157–63.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Bellot P, Welker MW, Soriano G, et al. Automated low flow pump system for the treatment of refractory ascites: a multi-center safety and efficacy study. J Hepatol. 2013;58(5):922–7.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Bureau C, Adebayo D, de RM C, et al. Alfapump(R) system vs. large volume paracentesis for refractory ascites: a multicenter randomized controlled study. J Hepatol. 2017;67(5):940–9.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Angeli P, Gines P, Wong F, et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the International Club of Ascites. J Hepatol. 2015;62(4):968–74.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Testino G, Ferro C, Sumberaz A, et al. Type-2 hepatorenal syndrome and refractory ascites: role of transjugular intrahepatic portosystemic stent-shunt in eighteen patients with advanced cirrhosis awaiting orthotopic liver transplantation. Hepato-Gastroenterology. 2003;50(54):1753–5.PubMedGoogle Scholar
  52. 52.
    Guevara M, Gines P, Bandi JC, et al. Transjugular intrahepatic portosystemic shunt in hepatorenal syndrome: effects on renal function and vasoactive systems. Hepatology. 1998;28(2):416–22.PubMedCrossRefGoogle Scholar
  53. 53.
    Albillos A, Lario M, Alvarez-Mon M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. J Hepatol. 2014;61(6):1385–96.PubMedCrossRefGoogle Scholar
  54. 54.
    Kim JJ, Tsukamoto MM, Mathur AK, et al. Delayed paracentesis is associated with increased in-hospital mortality in patients with spontaneous bacterial peritonitis. Am J Gastroenterol. 2014;109(9):1436–42.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Garcia-Martinez R, Andreola F, Mehta G, et al. Immunomodulatory and antioxidant function of albumin stabilises the endothelium and improves survival in a rodent model of chronic liver failure. J Hepatol. 2015;62(4):799–806.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Sort P, Navasa M, Arroyo V, et al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med. 1999;341(6):403–9.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Poca M, Concepcion M, Casas M, et al. Role of albumin treatment in patients with spontaneous bacterial peritonitis. Clin Gastroenterol Hepatol. 2012;10(3):309–15.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Arvaniti V, D’Amico G, Fede G, et al. Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis. Gastroenterology. 2010;139(4):1246, 1256.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Vilstrup H, Amodio P, Bajaj J, et al. Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology. 2014;60(2):715–35.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Amodio P, Del PF, Petteno E, et al. Prevalence and prognostic value of quantified electroencephalogram (EEG) alterations in cirrhotic patients. J Hepatol. 2001;35(1):37–45.PubMedCrossRefGoogle Scholar
  61. 61.
    Cordoba J, Minguez B. Hepatic encephalopathy. Semin Liver Dis. 2008;28(1):70–80.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Olde Damink SW, Jalan R, Deutz NE, et al. The kidney plays a major role in the hyperammonemia seen after simulated or actual GI bleeding in patients with cirrhosis. Hepatology. 2003;37(6):1277–85.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Shawcross DL, Davies NA, Williams R, Jalan R. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J Hepatol. 2004;40(2):247–54.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Cordoba J, Ventura-Cots M, Simon-Talero M, et al. Characteristics, risk factors, and mortality of cirrhotic patients hospitalized for hepatic encephalopathy with and without acute-on-chronic liver failure (ACLF). J Hepatol. 2014;60(2):275–81.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Vilstrup H, Schousboe A. Hepatic encephalopathy: an enigma from patient to enzyme and back. Metab Brain Dis. 2013;28(2):117.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Feltracco P, Cagnin A, Carollo C, Barbieri S, Ori C. Neurological disorders in liver transplant candidates: Pathophysiology and clinical assessment. Transplant Rev (Orlando). 2017;31(3):193–206.CrossRefGoogle Scholar
  67. 67.
    Zardi EM, Abbate A, Zardi DM, et al. Cirrhotic cardiomyopathy. J Am Coll Cardiol. 2010;56(7):539–49.PubMedCrossRefGoogle Scholar
  68. 68.
    Torregrosa M, Aguade S, Dos L, et al. Cardiac alterations in cirrhosis: reversibility after liver transplantation. J Hepatol. 2005;42(1):68–74.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Machicao VI, Balakrishnan M, Fallon MB. Pulmonary complications in chronic liver disease. Hepatology. 2014;59(4):1627–37.PubMedCrossRefGoogle Scholar
  70. 70.
    Montano-Loza AJ, Meza-Junco J, Prado CM, et al. Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol. 2012;10(2):166–73, 173.PubMedCrossRefGoogle Scholar
  71. 71.
    Lucidi C, Lattanzi B, Di G. V et al. A low muscle mass increases mortality in compensated cirrhotic patients with sepsis. Liver Int. 2018;38(5):851–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Ebadi M, Tandon P, Moctezuma-Velazquez C, et al. Low subcutaneous adiposity associates with higher mortality in female patients with cirrhosis. J Hepatol. 2018;69(3):608–16.PubMedCrossRefGoogle Scholar
  73. 73.
    EASL. Clinical practice guidelines on nutrition in chronic liver disease. J Hepatol. 2019;70(1):172–93.CrossRefGoogle Scholar
  74. 74.
    Amodio P, Bemeur C, Butterworth R, et al. The nutritional management of hepatic encephalopathy in patients with cirrhosis: International Society for Hepatic Encephalopathy and Nitrogen Metabolism Consensus. Hepatology. 2013;58(1):325–36.PubMedCrossRefGoogle Scholar
  75. 75.
    Les I, Doval E, Garcia-Martinez R, et al. Effects of branched-chain amino acids supplementation in patients with cirrhosis and a previous episode of hepatic encephalopathy: a randomized study. Am J Gastroenterol. 2011;106(6):1081–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Roman E, Garcia-Galceran C, Torrades T, et al. Effects of an exercise programme on functional capacity, body composition and risk of falls in patients with cirrhosis: a randomized clinical trial. PLoS One. 2016;11(3):e0151652.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Patel N, Muoz SJ. Bone disease in cirrhosis. Clin Liver Dis. 2015;6(4):96–9.CrossRefGoogle Scholar
  78. 78.
    Handzlik-Orlik G, Holecki M, Wilczynski K, Dulawa J. Osteoporosis in liver disease: pathogenesis and management. Ther Adv Endocrinol Metab. 2016;7(3):128–35.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Elkrief L, Rautou PE, Sarin S, Valla D, Paradis V, Moreau R. Diabetes mellitus in patients with cirrhosis: clinical implications and management. Liver Int. 2016;36(7):936–48.PubMedCrossRefGoogle Scholar
  80. 80.
    Burra P. Liver abnormalities and endocrine diseases. Best Pract Res Clin Gastroenterol. 2013;27(4):553–63.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Diaz-Fontenla F, Castillo-Pradillo M, Diaz-Gomez A, et al. Refractory hepatic encephalopathy in a patient with hypothyroidism: Another element in ammonia metabolism. World J Gastroenterol. 2017;23(28):5246–52.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Marks PW. Hematologic manifestations of liver disease. Semin Hematol. 2013;50(3):216–21.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Tripodi A, Primignani M, Mannucci PM, Caldwell SH. Changing concepts of cirrhotic coagulopathy. Am J Gastroenterol. 2016;112:274.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Ghosn SH, Kibbi AG. Cutaneous manifestations of liver diseases. Clin Dermatol. 2008;26(3):274–82.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    EASL. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182–236.CrossRefGoogle Scholar
  86. 86.
    Bajaj JS, Moreau R, Kamath PS, et al. Acute-on-chronic liver failure: getting ready for prime-time. Hepatology. 2018;68(4):1621–32.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Gustot T, Fernandez J, Garcia E, et al. Clinical course of acute-on-chronic liver failure syndrome and effects on prognosis. Hepatology. 2015;62(1):243–52.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Artru F, Louvet A, Ruiz I, et al. Liver transplantation in the most severely ill cirrhotic patients: a multicenter study in acute-on-chronic liver failure grade 3. J Hepatol. 2017;67(4):708–15.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Levesque E, Winter A, Noorah Z, et al. Impact of acute-on-chronic liver failure on 90-day mortality following a first liver transplantation. Liver Int. 2017;37(5):684–93.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Putignano A, Gustot T. New concepts in acute-on-chronic liver failure: implications for liver transplantation. Liver Transpl. 2017;23(2):234–43.PubMedCrossRefGoogle Scholar
  91. 91.
    Fagundes C, Barreto R, Guevara M, et al. A modified acute kidney injury classification for diagnosis and risk stratification of impairment of kidney function in cirrhosis. J Hepatol. 2013;59(3):474–81.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rita Garcia-Martinez
    • 1
    • 2
    • 3
    • 4
  • Raquel Diaz-Ruiz
    • 5
    • 6
  • Jesus Millan
    • 1
    • 6
  • Rafael Bañares
    • 2
    • 3
    • 5
    • 6
  1. 1.Servicio de Medicina InternaHospital General Universitario Gregorio MarañónMadridSpain
  2. 2.Instituto de Investigación Sanitaria Gregorio MarañónMadridSpain
  3. 3.Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)MadridSpain
  4. 4.Facultad de MedicinaUniversidad San Pablo CEUMadridSpain
  5. 5.Servicio de Aparato DigestivoHospital General Universitario Gregorio MarañónMadridSpain
  6. 6.Facultad de MedicinaUniversidad Complutense MadridMadridSpain

Personalised recommendations