Advertisement

Liver Histology

  • Simone Carotti
  • Sergio MoriniEmail author
  • Guido Carpino
  • Eugenio Gaudio
Chapter

Abstract

The basic histological structure of the liver consists of closely intertwined epithelial cell cords that make it a cordonal gland. The classic hepatic lobule with the portal spaces in the periphery and the centrilobular vein in the center is the simplest and most versatile representation of the morpho-functional unit of the organ. Aspects of liver physiology and metabolism show a heterogeneous distribution along the porto-central axis of the lobule determining the basis of the metabolic zonation, that characterizes the functional attitude and the ultrastructural features of the different liver cell types. The main hepatic cell type is the hepatocyte with its different specialized domains, such as the sinusoidal, the lateral and the canalicular. Between hepatocytes cordons there are tortuous vascular channel named sinusoids, lined by fenestrated endothelial cells allowing blood plasma freely moving from vessel to perisinusoidal space of Disse facing the hepatocytes. In the Disse’s space, hepatic stellate cells, storing vitamin A, localize in a quiescent phenotype and they activate in response to chronic hepatic damage. The sinusoid endothelial cells and the hepatic stellate cells are also able to respond to vasoactive substances modifying the sinusoidal diameter. Resident macrophages, such as Kupffer cells and circulating monocyte, together with lymphocytic cells, such as NK cells, play roles in the maintenance of immune tolerance in the liver or in the activation of pro-inflammatory responses. Cholangiocytes lining the lumen of the biliary tree are responsible for the modification of the bile composition, are heterogeneous in size, regulation and response to biliary damage. The blood supplying the hepatic lobule is distributed by the branches of the portal vein and the hepatic artery, the latter terminating in a peribiliary plexus around the bile ducts. The wall of extra hepatic biliary tracts is formed by mucosal, muscle and serosal layers. The gallbladder with its mucosal folds is able to reabsorbs water and solutes fluids in order to concentrate bile.

Keywords

Liver morpho-functional unit Liver zonation Liver cell types Cholangiocyte heterogeneity Hepatic microcirculation 

References

  1. 1.
    Kiernan F. The anatomy and physiology of the liver. Philos Trans R Soc Lond. 1833;123:711–70.CrossRefGoogle Scholar
  2. 2.
    Mall FP. A study of the structural unit of the liver. Am J Anat. 1906;5:227–308.CrossRefGoogle Scholar
  3. 3.
    Rappaport AM. The structural and functional unit in the human liver (liver acinus). Anat Rec. 1958;130:673–89.CrossRefGoogle Scholar
  4. 4.
    Monga SP. β-Catenin signaling and roles in liver homeostasis, injury, and tumorigenesis. Gastroenterology. 2015;148:1294–310.  https://doi.org/10.1053/j.gastro.2015.02.056.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Benhamouche S, Decaens T, Godard C, Chambrey R, Rickman DS, Moinard C, Vasseur-Cognet M, Kuo CJ, Kahn A, Perret C, Colnot S. Apc tumor suppressor gene is the "zonation-keeper" of mouse liver. Dev Cell. 2006;10:759–70.CrossRefGoogle Scholar
  6. 6.
    Matsumoto T, Kawakami M. The unit-concept of hepatic parenchyma—a re-examination based on angioarchitectural studies. Acta Pathol Jpn. 1982;32(Suppl 2):285–314.PubMedGoogle Scholar
  7. 7.
    Hofmann AF. The choleohepatic circulation of unconjugated bile acids: an update. In: Paumgartner G, Stiehl A, Gerok W, editors. Bile acids and the hepatobiliary system: from basic science to clinical practice. Dordrecht: Kluwer Academic Publishers; 1993. p. 143–60.Google Scholar
  8. 8.
    Ekataksin W, Zou ZZ, Wake K, et al. HMS, hepatic microcirculatory subunits in mammalian species. Intralobular grouping of liver tissue with definition enhanced by drop out sinusoids. In: Wisse E, Knook DL, Wake K, editors. Cells of the hepatic sinusoid. Leiden: Kupffer Cell Foundation; 1995. p. 247–51.Google Scholar
  9. 9.
    Cao H, Krueger EW, McNiven MA. Hepatocytes internalize trophic receptors at large endocytic “Hot Spots”. Hepatology. 2011;54:1819–29.  https://doi.org/10.1002/hep.24572.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mazzone A, Tietz P, Jefferson J, Pagano R, LaRusso NF. Isolation and characterization of lipid microdomains from apical and basolateral plasma membranes of rat hepatocytes. Hepatology. 2006;43:287–96.CrossRefGoogle Scholar
  11. 11.
    Wang MJ, Chen F, Lau JTY, Hu YP. Hepatocyte polyploidization and its association with pathophysiological processes. Cell Death Dis. 2017;8:e2805.  https://doi.org/10.1038/cddis.2017.167.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Czaja MJ. Functions of autophagy in hepatic and pancreatic physiology and disease. Gastroenterology. 2011;140:1895–908.  https://doi.org/10.1053/j.gastro.2011.04.038.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Liu K, Czaja MJ. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 2013;20:3–11.  https://doi.org/10.1038/cdd.2012.63.CrossRefPubMedGoogle Scholar
  14. 14.
    Couvelard A, Scoazec JY, Dauge MC, Bringuier AF, Potet F, Feldmann G. Structural and functional differentiation of sinusoidal endothelial cells during liver organogenesis in humans. Blood. 1996;87:4568–80.CrossRefGoogle Scholar
  15. 15.
    Poisson J, Lemoinne S, Boulanger C, Durand F, Moreau R, Valla D, Rautou PE. Liver sinusoidal endothelial cells: physiology and role in liver diseases. J Hepatol. 2017;66:212–27.  https://doi.org/10.1016/j.jhep.2016.07.009.CrossRefPubMedGoogle Scholar
  16. 16.
    Ding BS, Nolan DJ, Butler JM, James D, Babazadeh AO, Rosenwaks Z, Mittal V, Kobayashi H, Shido K, Lyden D, Sato TN, Rabbany SY, Rafii S. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature. 2010;468(7321):310–5.  https://doi.org/10.1038/nature09493.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Carotti S, Morini S, Corradini SG, Burza MA, Molinaro A, Carpino G, Merli M, De Santis A, Muda AO, Rossi M, Attili AF, Gaudio E. Glial fibrillary acidic protein as an early marker of hepatic stellate cell activation in chronic and posttransplant recurrent hepatitis C. Liver Transpl. 2008;14:806–14.  https://doi.org/10.1002/lt.21436.CrossRefPubMedGoogle Scholar
  18. 18.
    Carotti S, Perrone G, Amato M, Vespasiani Gentilucci U, Righi D, Francesconi M, Pellegrini C, Zalfa F, Zingariello M, Picardi A, Onetti Muda A, Morini S. Reelin expression in human liver of patients with chronic hepatitis C infection. Eur J Histochem. 2017;61:2745.  https://doi.org/10.4081/ejh.2017.2745.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88:125–72.  https://doi.org/10.1152/physrev.00013.2007.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Carpino G, Franchitto A, Morini S, Corradini SG, Merli M, Gaudio E. Activated hepatic stellate cells in liver cirrhosis. A morphologic and morphometrical study. Ital J Anat Embryol. 2004;109(4):225–38.PubMedGoogle Scholar
  21. 21.
    Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, de Bruijn MF, Geissmann F, Rodewald HR. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518(7540):547–51.  https://doi.org/10.1038/nature13989.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Karlmark KR, Weiskirchen R, Zimmermann HW, Gassler N, Ginhoux F, Weber C, Merad M, Luedde T, Trautwein C, Tacke F. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology. 2009;50:261–74.  https://doi.org/10.1002/hep.22950.CrossRefPubMedGoogle Scholar
  23. 23.
    González-Domínguez É, Samaniego R, Flores-Sevilla JL, Campos-Campos SF, Gómez-Campos G, Salas A, Campos-Peña V, Corbí ÁL, Sánchez-Mateos P, Sánchez-Torres C. CD163L1 and CLEC5A discriminate subsets of human resident and inflammatory macrophages in vivo. J Leukoc Biol. 2015;98:453–66.  https://doi.org/10.1189/jlb.3HI1114-531R.CrossRefPubMedGoogle Scholar
  24. 24.
    Jenne CN, Kubes P. Immune surveillance by the liver. Nat Immunol. 2013;14:996–1006.CrossRefGoogle Scholar
  25. 25.
    Peng H, Wisse E, Tian Z. Liver natural killer cells: subsets and roles in liver immunity. Cell Mol Immunol. 2016;13:328–36.  https://doi.org/10.1038/cmi.2015.96.CrossRefPubMedGoogle Scholar
  26. 26.
    Alvaro D, Mancino MG, Glaser S, Gaudio E, Marzioni M, Francis H, Alpini G. Proliferating cholangiocytes: a neuroendocrine compartment in the diseased liver. Gastroenterology. 2007;132:415–31.CrossRefGoogle Scholar
  27. 27.
    Roskams TA, Theise ND, Balabaud C, Bhagat G, Bhathal PS, Bioulac-Sage P, Brunt EM, Crawford JM, Crosby HA, Desmet V, Finegold MJ, Geller SA, Gouw AS, Hytiroglou P, Knisely AS, Kojiro M, Lefkowitch JH, Nakanuma Y, Olynyk JK, Park YN, Portmann B, Saxena R, Scheuer PJ, Strain AJ, Thung SN, Wanless IR, West AB. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology. 2004;39:1739–45.CrossRefGoogle Scholar
  28. 28.
    Alpini G, Roberts S, Kuntz SM, Ueno Y, Gubba S, Podila PV, LeSage G, LaRusso NF. Morphological, molecular, and functional heterogeneity of cholangiocytes from normal rat liver. Gastroenterology. 1996;110:1636–43.CrossRefGoogle Scholar
  29. 29.
    Maroni L, Haibo B, Ray D, Zhou T, Wan Y, Meng F, Marzioni M, Alpini G. Functional and structural features of cholangiocytes in health and disease. Cell Mol Gastroenterol Hepatol. 2015;1:368–80.CrossRefGoogle Scholar
  30. 30.
    Glaser SS, Gaudio E, Rao A, Pierce LM, Onori P, Franchitto A, Francis HL, Dostal DE, Venter JK, DeMorrow S, Mancinelli R, Carpino G, Alvaro D, Kopriva SE, Savage JM, Alpini GD. Morphological and functional heterogeneity of the mouse intrahepatic biliary epithelium. Lab Investig. 2009;89:456–69.  https://doi.org/10.1038/labinvest.2009.6.CrossRefPubMedGoogle Scholar
  31. 31.
    Mancinelli R, Franchitto A, Gaudio E, Onori P, Glaser S, Francis H, Venter J, Demorrow S, Carpino G, Kopriva S, White M, Fava G, Alvaro D, Alpini G. After damage of large bile ducts by gamma-aminobutyric acid, small ducts replenish the biliary tree by amplification of calcium-dependent signaling and de novo acquisition of large cholangiocyte phenotypes. Am J Pathol. 2010;176:1790–800.  https://doi.org/10.2353/ajpath.2010.090677.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gaudio E, Chaberek S, Montella A, Pannarale L, Morini S, Novelli G, Borghese F, Conte D, Ostrowski K. Fractal and Fourier analysis of the hepatic sinusoidal network in normal and cirrhotic rat liver. J Anat. 2005;207:107–15.CrossRefGoogle Scholar
  33. 33.
    Gaudio E, Onori P, Pannarale L, Alvaro D. Hepatic microcirculation and peribiliary plexus in experimental biliary cirrhosis: a morphological study. Gastroenterology. 1996;111:1118–24.CrossRefGoogle Scholar
  34. 34.
    Eipel C, Abshagen K, Vollmar B. Regulation of hepatic blood flow: the hepatic arterial buffer response revisited. World J Gastroenterol. 2010;16:6046–57.CrossRefGoogle Scholar
  35. 35.
    Lautt WW. Relationship between hepatic blood flow and overall metabolism: the hepatic arterial buffer response. Fed Proc. 1983;42:1662–6.PubMedGoogle Scholar
  36. 36.
    Reynaert H, Thompson MG, Thomas T, Geerts A. Hepatic stellate cells: role in microcirculation and pathophysiology of portal hypertension. Gut. 2002;50:571–81.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Simone Carotti
    • 1
  • Sergio Morini
    • 1
    Email author
  • Guido Carpino
    • 2
  • Eugenio Gaudio
    • 3
  1. 1.Department of Medicine and SurgeryUniversity Campus Bio-Medico of RomeRomeItaly
  2. 2.Department of Motor, Human and Health SciencesUniversity of Rome “Foro Italico”RomeItaly
  3. 3.Department of Anatomical, Histological, Locomotor and Legal Medicine SciencesSapienza UniversityRomeItaly

Personalised recommendations