Advertisement

Liver Diseases pp 205-210 | Cite as

The Microbiome in Liver Diseases

  • Hubert E. BlumEmail author
Chapter

Abstract

The human microbiome project (HMP) was established in 2007 as a global consortium that aims at the sequencing of all microbes (eukaryotes, archaea, bacteria, viruses) that inhabit specific body sites, such as the mouth, throat and airways, stomach and intestine, the urogenital system and the skin, respectively. Recent data demonstrate that specific compositions of the microbial community are associated with health and disease and suggest that the detailed characterization, function and variation of the microbial community will reveal important commensal host-microbe as well as microbe-microbe interactions with diagnostic, therapeutic and preventive implications. Indeed, the intestinal microbial community in particular has turned out to play a role in liver diseases.

Keywords

Intestinal microbiome Dysbiosis Alcoholic liver disease Non-alcoholic liver disease 

Notes

Acknowledgments

Conflict of interests: The author declares no conflict of interest.

Financial disclosure: The author has no financing to disclose.

References

  1. 1.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.PubMedCrossRefGoogle Scholar
  2. 2.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, et al. The sequence of the human genome. Science. 2001;291:1304–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Manolio TA, Brooks LD, Collins FS. A HapMap harvest of insights into the genetics of common disease. J Clin Invest. 2008;118:1590–605.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Manolio TA, Collins FS. The HapMap and genome-wide association studies in diagnosis and therapy. Annu Rev Med. 2009;60:443–56.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Hou L, Heilbronner U, Degenhardt F, Adli M, Akiyama K, Akula N, Ardau R, et al. Genetic variants associated with response to lithium treatment in bipolar disorder: a genome-wide association study. Lancet. 2016;387(10023):1085–93.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Proctor LM. The human microbiome project in 2011 and beyond. Cell Host Microbe. 2011;10:287–91.PubMedCrossRefGoogle Scholar
  7. 7.
    Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol. 2011;9:279–90.PubMedCrossRefGoogle Scholar
  8. 8.
    Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.CrossRefGoogle Scholar
  9. 9.
    Human Microbiome Project C. A framework for human microbiome research. Nature. 2012;486:215–21.CrossRefGoogle Scholar
  10. 10.
    Gevers D, Knight R, Petrosino JF, Huang K, McGuire AL, Birren BW, Nelson KE, et al. The Human Microbiome Project: a community resource for the healthy human microbiome. PLoS Biol. 2012;10:e1001377.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Morgan XC, Segata N, Huttenhower C. Biodiversity and functional genomics in the human microbiome. Trends Genet. 2013;29:51–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Rossen NG, Fuentes S, van der Spek MJ, Tijssen JG, Hartman JH, Duflou A, Lowenberg M, et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology. 2015;149:110–8. e114PubMedCrossRefGoogle Scholar
  13. 13.
    Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375:2369–79.PubMedCrossRefGoogle Scholar
  14. 14.
    Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol. 2014;32:834–41.PubMedCrossRefGoogle Scholar
  15. 15.
    Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, Mujagic Z, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352:565–9.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov A, et al. Population-level analysis of gut microbiome variation. Science. 2016;352:560–4.PubMedCrossRefGoogle Scholar
  18. 18.
    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107:14691–6.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20:159–66.PubMedCrossRefGoogle Scholar
  20. 20.
    Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, Gao Z, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488:621–6.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Maurice CF, Haiser HJ, Turnbaugh PJ. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell. 2013;152:39–50.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Fujimura KE, Demoor T, Rauch M, Faruqi AA, Jang S, Johnson CC, Boushey HA, et al. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc Natl Acad Sci U S A. 2014;111:805–10.PubMedCrossRefGoogle Scholar
  23. 23.
    Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, Panzer AR, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22:1187–91.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, et al. Human genetics shape the gut microbiome. Cell. 2014;159:789–99.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016;535:75–84.PubMedCrossRefGoogle Scholar
  26. 26.
    Vatanen T, Kostic AD, d’Hennezel E, Siljander H, Franzosa EA, Yassour M, Kolde R, et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell. 2016;165:842–53.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535:65–74.PubMedCrossRefGoogle Scholar
  28. 28.
    Ijssennagger N, Belzer C, Hooiveld GJ, Dekker J, van Mil SW, Muller M, Kleerebezem M, et al. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc Natl Acad Sci U S A. 2015;112:10038–43.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Reinhardt C, Bergentall M, Greiner TU, Schaffner F, Ostergren-Lunden G, Petersen LC, Ruf W, et al. Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature. 2012;483:627–31.PubMedCrossRefGoogle Scholar
  30. 30.
    Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–76.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214.PubMedCrossRefGoogle Scholar
  32. 32.
    Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, Forslund K, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376–81.PubMedCrossRefGoogle Scholar
  33. 33.
    Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–85.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165:111–24.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, Gu X, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163:1585–95.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017;20:145–55.PubMedCrossRefGoogle Scholar
  37. 37.
    Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 2015;17:565–76.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 2016;167:1469–80. e1412PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18:965–77.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Ege MJ, Mayer M, Normand AC, Genuneit J, Cookson WO, Braun-Fahrlander C, Heederik D, et al. Exposure to environmental microorganisms and childhood asthma. N Engl J Med. 2011;364:701–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Lynch SV, Wood RA, Boushey H, Bacharier LB, Bloomberg GR, Kattan M, O’Connor GT, et al. Effects of early-life exposure to allergens and bacteria on recurrent wheeze and atopy in urban children. J Allergy Clin Immunol. 2014;134:593–601.e12.PubMedCrossRefGoogle Scholar
  42. 42.
    Stein MM, Hrusch CL, Gozdz J, Igartua C, Pivniouk V, Murray SE, Ledford JG, et al. Innate immunity and asthma risk in Amish and Hutterite farm children. N Engl J Med. 2016;375:411–21.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Jonsson AL, Backhed F. Drug the bug! Cell. 2015;163:1565–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Tilg H. A gut feeling about thrombosis. N Engl J Med. 2016;374:2494–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575–84.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, Zhang D, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun. 2015;6:6528.PubMedCrossRefGoogle Scholar
  48. 48.
    Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350:1084–9.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Konishi H, Fujiya M, Tanaka H, Ueno N, Moriichi K, Sasajima J, Ikuta K, et al. Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat Commun. 2016;7:12365.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.PubMedCrossRefGoogle Scholar
  51. 51.
    Hall LJ, Walshaw J, Watson AJ. Gut microbiome in new-onset Crohn’s disease. Gastroenterology. 2014;147:932–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Sha S, Xu B, Wang X, Zhang Y, Wang H, Kong X, Zhu H, et al. The biodiversity and composition of the dominant fecal microbiota in patients with inflammatory bowel disease. Diagn Microbiol Infect Dis. 2013;75:245–51.PubMedCrossRefGoogle Scholar
  53. 53.
    Forbes JD, Van Domselaar G, Bernstein CN. Microbiome survey of the inflamed and noninflamed gut at different compartments within the gastrointestinal tract of inflammatory bowel disease patients. Inflamm Bowel Dis. 2016;22:817–25.PubMedCrossRefGoogle Scholar
  54. 54.
    Forbes JD, Van Domselaar G, Bernstein CN. The gut microbiota in immune-mediated inflammatory diseases. Front Microbiol. 2016;7:1081.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Ramanan D, Bowcutt R, Lee SC, Tang MS, Kurtz ZD, Ding Y, Honda K, et al. Helminth infection promotes colonization resistance via type 2 immunity. Science. 2016;352:608–12.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Moschen AR, Gerner RR, Wang J, Klepsch V, Adolph TE, Reider SJ, Hackl H, et al. Lipocalin 2 protects from inflammation and tumorigenesis associated with gut microbiota alterations. Cell Host Microbe. 2016;19:455–69.PubMedCrossRefGoogle Scholar
  57. 57.
    Cantarel BL, Waubant E, Chehoud C, Kuczynski J, DeSantis TZ, Warrington J, Venkatesan A, et al. Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J Investig Med. 2015;63:729–34.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Jangi S, Gandhi R, Cox LM, Li N, von Glehn F, Yan R, Patel B, et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun. 2016;7:12015.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Chen J, Wright K, Davis JM, Jeraldo P, Marietta EV, Murray J, Nelson H, et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016;8:43.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, Marmon S, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015;67:128–39.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, Kau AL, et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science. 2013;339:548–54.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M, Alam MA, Benezra A, et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature. 2014;510:417–21.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Haque TR, Barritt AS. Intestinal microbiota in liver disease. Best Pract Res Clin Gastroenterol. 2016;30:133–42.PubMedCrossRefGoogle Scholar
  64. 64.
    Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, Guo J, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513:59–64.PubMedCrossRefGoogle Scholar
  65. 65.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.PubMedCrossRefGoogle Scholar
  66. 66.
    Shen J, Obin MS, Zhao L. The gut microbiota, obesity and insulin resistance. Mol Asp Med. 2013;34:39–58.CrossRefGoogle Scholar
  67. 67.
    Mazidi M, Rezaie P, Kengne AP, Mobarhan MG, Ferns GA. Gut microbiome and metabolic syndrome. Diabetes Metab Syndr. 2016;10:S150–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Sonnenburg JL, Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535:56–64.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Choi GB, Yim YS, Wong H, Kim S, Kim H, Kim SV, Hoeffer CA, et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science. 2016;351:933–9.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Aizawa E, Tsuji H, Asahara T, Takahashi T, Teraishi T, Yoshida S, Ota M, et al. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J Affect Disord. 2016;202:254–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Bu XL, Yao XQ, Jiao SS, Zeng F, Liu YH, Xiang Y, Liang CR, et al. A study on the association between infectious burden and Alzheimer’s disease. Eur J Neurol. 2015;22:1519–25.PubMedCrossRefGoogle Scholar
  72. 72.
    Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E, Haapaniemi E, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord. 2015;30:350–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Tasnim N, Abulizi N, Pither J, Hart MM, Gibson DL. Linking the gut microbial ecosystem with the environment: does gut health depend on where we live? Front Microbiol. 2017;8:1935.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Llopis M, Cassard AM, Wrzosek L, Boschat L, Bruneau A, Ferrere G, Puchois V, et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut. 2016;65:830–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Schnabl B. Liver capsule: mechanisms of alcoholic hepatitis. Hepatology. 2016;64:276.PubMedCrossRefGoogle Scholar
  76. 76.
    Arab JP, Arrese M, Trauner M. Recent insights into the pathogenesis of nonalcoholic fatty liver disease. Annu Rev Pathol. 2018;13:321–50.PubMedCrossRefGoogle Scholar
  77. 77.
    LaRusso NF, Tabibian JH, O’Hara SP. Role of the intestinal microbiome in cholestatic liver disease. Dig Dis. 2017;35:166–8.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Dyson JK, Beuers U, Jones DEJ, Lohse AW, Hudson M. Primary sclerosing cholangitis. Lancet. 2018;391:2547–59.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Tilg H, Cani PD, Mayer EA. Gut microbiome and liver diseases. Gut. 2016;65:2035–44.PubMedCrossRefGoogle Scholar
  80. 80.
    Betrapally NS, Gillevet PM, Bajaj JS. Gut microbiome and liver disease. Transl Res. 2017;179:49–59.PubMedCrossRefGoogle Scholar
  81. 81.
    Acharya C, Sahingur SE, Bajaj JS. Microbiota, cirrhosis, and the emerging oral-gut-liver axis. JCI Insight. 2017;2  https://doi.org/10.1172/jci.insight.94416.
  82. 82.
    Brenner DA, Paik YH, Schnabl B. Role of gut microbiota in liver disease. J Clin Gastroenterol. 2015;49(Suppl 1):S25–7.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Schramm C. Bile acids, the microbiome, immunity, and liver tumors. N Engl J Med. 2018;379:888–90.PubMedCrossRefGoogle Scholar
  84. 84.
    Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, Agdashian D, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 2018;360  https://doi.org/10.1126/science.aan5931.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Woodhouse CA, Patel VC, Singanayagam A, Shawcross DL. Review article: the gut microbiome as a therapeutic target in the pathogenesis and treatment of chronic liver disease. Aliment Pharmacol Ther. 2018;47:192–202.PubMedCrossRefGoogle Scholar
  86. 86.
    Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, Guy CD, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016;63:764–75.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Bajaj JS, Betrapally NS, Hylemon PB, Heuman DM, Daita K, White MB, Unser A, et al. Salivary microbiota reflects changes in gut microbiota in cirrhosis with hepatic encephalopathy. Hepatology. 2015;62:1260–71.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Medicine IIUniversity Hospital FreiburgFreiburgGermany

Personalised recommendations