• Luca OnetoEmail author
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 15)


In this section we will give an overview of the problem of learning based on empirical data. In particular we will first generally discuss about the inference problems with particular reference to the inductive case and the statistical tools exploited to assess the performance of the induction process.


  1. 1.
    Casella G, Berger RL (2002) Statistical inference. Duxbury Pacific Grove, CAzbMATHGoogle Scholar
  2. 2.
    Peirce CS (1974) Collected papers of charles sanders peirce. Harvard University PressGoogle Scholar
  3. 3.
    Popkin RH, Stroll A (1993) Philosophy made simple. Made Simple BooksGoogle Scholar
  4. 4.
    Sternberg R (2008) Cognitive psychology. Cengage LearningGoogle Scholar
  5. 5.
    Popper KR (1959) The logic of scientific discovery. London HutchinsonGoogle Scholar
  6. 6.
    Guyon I, Saffari A, Dror G, Cawley G (2010) Model selection: beyond the bayesian/frequentist divide. J. Mach. Learn. Res. 11:61–87MathSciNetzbMATHGoogle Scholar
  7. 7.
    Györfi L, Kohler M, Krzyzak A, Walk H (2006) A distribution-free theory of nonparametric regression. Springer Science & Business MediaGoogle Scholar
  8. 8.
    Bishop CM (1995) Neural networks for pattern recognition. Oxford University PressGoogle Scholar
  9. 9.
    Cherkassky V, Mulier FM (2007) Learning from data: concepts, theory, and methods. WileyGoogle Scholar
  10. 10.
    Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. ElsevierGoogle Scholar
  11. 11.
    Shalev-Shwartz S, Ben-David S (2014) Understanding machine learning: from theory to algorithms. Cambridge University PressGoogle Scholar
  12. 12.
    Witten IH, Frank E, Hall MA, Pal CJ (2016) Data mining: practical machine learning tools and techniques. Morgan KaufmannGoogle Scholar
  13. 13.
    Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301):13–30MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Bennett G (1962) Probability inequalities for the sum of independent random variables. J. Am. Stat. Assoc. 57(297):33–45zbMATHCrossRefGoogle Scholar
  15. 15.
    Bernstein S (1924) On a modification of chebyshev’s inequality and of the error formula of laplace. Ann. Sci. Inst. Sav. Ukraine, Sect. Math 1(4):38–49Google Scholar
  16. 16.
    Maurer A, Pontil M (2009) Empirical bernstein bounds and sample variance penalization. arXiv preprint arXiv:0907.3740
  17. 17.
    Clopper CJ, Pearson ES (1934) The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 404–413zbMATHCrossRefGoogle Scholar
  18. 18.
    Bentkus V (2004) On hoeffding’s inequalities. Ann. Probab. 32(2):1650–1673MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Talagrand M (1995) The missing factor in hoeffding’s inequalities. Ann. l’IHP Probabilités et Stat. 31(4):689–702MathSciNetzbMATHGoogle Scholar
  20. 20.
    Massart P (1998) Optimal constants for Hoeffding type inequalities. Université de Paris-Sud, Département de MathématiqueGoogle Scholar
  21. 21.
    Boucheron S, Lugosi G, Massart P (2013) Concentration inequalities: a nonasymptotic theory of independence. Oxford University PressGoogle Scholar
  22. 22.
    Boucheron S, Lugosi G, Massart P (2000) A sharp concentration inequality with applications. Random Struct. Algorithms 16(3):277–292MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Bousquet O (2002) A bennett concentration inequality and its application to suprema of empirical processes. Comptes Rendus Math. 334(6):495–500MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Klein T, Rio E (2005) Concentration around the mean for maxima of empirical processes. Ann. Probab. 33(3):1060–1077MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Talagrand M (1995) Concentration of measure and isoperimetric inequalities in product spaces. Publications Mathématiques de l’Institut des Hautes Etudes Scientifiques 81(1):73–205MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Talagrand M (1996) New concentration inequalities in product spaces. Inven. Math. 126(3):505–563MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Talagrand M (1996) A new look at independence. Ann. Probab. 24(1):1–34MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Ledoux M (1997) On talagrand’s deviation inequalities for product measures. ESAIM: Probability and statistics, 1:63–87MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Ledoux M (1996) Isoperimetry and gaussian analysis. In: Lectures on probability theory and statistics, pp 165–294Google Scholar
  30. 30.
    Bobkov SG, Ledoux M (1998) On modified logarithmic sobolev inequalities for bernoulli and poisson measures. J. Funct. Anal. 156(2):347–365MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.DIBRISUniversità degli Studi di GenovaGenoaItaly

Personalised recommendations