Advertisement

Into the Mind of an Artist: Convergent Research at the Nexus of Art, Science, and Technology

  • Jesus G. Cruz-GarzaEmail author
  • Anastasiya E. Kopteva
  • Jo Ann Fleischhauer
  • Jose L. Contreras-Vidal
Chapter
Part of the Springer Series on Bio- and Neurosystems book series (SSBN, volume 10)

Abstract

We introduce a novel convergent research framework based on context-aware, mobile brain–body imaging (MoBI) technology to track, record, and annotate the creative process of an artist as she conceived and created a new composition over a period of several months. We discuss behavioral, technological, scientific, and artistic challenges for the long-term study of creativity in complex natural settings.

Keywords

EEG Real-world MoBI Art Creativity Insight Neuroimaging 

Notes

Acknowledgements

The authors thank the support of this research by the Cynthia Woods Mitchell Center for the Arts at the University of Houston for providing the artist with a research grant to conduct olfactory research and consult with orchid bee researcher, Dr. Santiago Ramirez, The Ramirez Lab, University of California Davis, Davis, CA; and the Institute of Art and Olfaction in Los Angeles, CA. Research funds for this project were provided by the National Science Foundation Award #BCS 1533691. Jeannie Kever conducted the interview with the artist, transcribed and adapted with permission.

Supplementary material

476737_1_En_8_MOESM1_ESM.mp4 (78.2 mb)
Supplementary material 1 (MP4 80114 kb)

References

  1. 1.
    Abraham, A.: The Neuroscience of Creativity. Cambridge University Press, Cambridge (2018)Google Scholar
  2. 2.
    Arctander, S.: Perfume and Flavor Materials of Natural Origin. CreateSpace Independent Publishing Platform, Elizabeth, NJ (1960)Google Scholar
  3. 3.
    Beaty, R.E., Benedek, M., Wilkins, R.W., et al.: Creativity and the default network: a functional connectivity analysis of the creative brain at rest. Neuropsychologia (2014).  https://doi.org/10.1016/j.neuropsychologia.2014.09.019
  4. 4.
    Bigdely-Shamlo, N., Mullen, T., Kothe, C., et al.: The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Front. Neuroinform. 9, 16 (2015).  https://doi.org/10.3389/fninf.2015.00016CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bigdely-Shamlo, N., Touryan, J., Ojeda, A., et al.: Automated EEG mega-analysis I: spectral and amplitude characteristics across studies. BioRxiv 409631 (2018)Google Scholar
  6. 6.
    Contreras-Vidal, J.L., Cruz-Garza, J., Kopteva, A.: Towards a whole body brain-machine interface system for decoding expressive movement intent challenges and opportunities. In: 2017 5th International Winter Conference on Brain-Computer Interface (BCI), IEEE, pp. 1–4 (2017)Google Scholar
  7. 7.
    Cruz-Garza, J.G., et al.: Your brain on art: a new paradigm to study artistic creativity based on the ‘exquisite corpse’ using mobile brain-body imaging. In Brain Art, pp. 283–308. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-14323-7_10
  8. 8.
    Cruz-Garza, J.G., Brantley, J.A., Nakagome, S., et al.: Deployment of mobile EEG technology in an art museum setting: evaluation of signal quality and usability. Front. Hum. Neurosci. 11 (2017a).  https://doi.org/10.3389/fnhum.2017.00527
  9. 9.
    Cruz-Garza, J.G., Brantley, J.A., Nakagome, S., et al.: Mobile EEG Recordings in an Art Museum Setting. IEEE Dataport (2017b).  https://doi.org/10.21227/h2tm00
  10. 10.
    Cruz-Garza, J.G., Hernandez, Z.R., Nepaul, S., et al.: Neural decoding of expressive human movement from scalp electroencephalography (EEG). Front. Hum. Neurosci. 8, 188 (2014).  https://doi.org/10.3389/fnhum.2014.00188CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fleischhauer, J.A.: Media Sculpture & Installation Artist (2019). http://jofleischhauer.com/
  12. 12.
    Gilbert, D., Dibb, W.D., Plath, L.C., Hiyane, S.G.: Effects of nicotine and caffeine, separately and in combination, on EEG topography, mood, heart rate, cortisol, and vigilance. Psychophysiology 37, 583–595 (2000)CrossRefGoogle Scholar
  13. 13.
    Goshvarpour, A., Abbasi, A., Goshvarpour, A.: Combination of sLORETA and nonlinear coupling for emotional EEG source localization. Nonlinear Dyn. Psychol. Life Sci. 20(3), 353–368 (2016)Google Scholar
  14. 14.
    Gramann, K., Ferris, D.P., Gwin, J., Makeig, S.: Imaging natural cognition in action. Int. J. Psychophysiol. 91, 22–29 (2014)CrossRefGoogle Scholar
  15. 15.
    Kever, J.: Art and Science Come Together on the Dance Floor. TMC News (2015)Google Scholar
  16. 16.
  17. 17.
    Kilicarslan, A., Contreras-Vidal, J.L.: Full characterization and removal of motion artifacts from scalp EEG recordings. In: 2017 International Symposium on Wearable Robotics and Rehabilitation (WeRob). IEEE, p. 1 (2017)Google Scholar
  18. 18.
    Kilicarslan, A., Grossman, R.G., Contreras-Vidal, J.L.: A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements. J. Neural Eng. 13, 026013 (2016).  https://doi.org/10.1088/1741-2560/13/2/026013CrossRefPubMedGoogle Scholar
  19. 19.
    Kleifges, K., Bigdely-Shamlo, N., Kerick, S.E., Robbins, K.A.: BLINKER: automated extraction of ocular indices from EEG enabling large-scale analysis. Front. Neurosci. 11, 12 (2017)CrossRefGoogle Scholar
  20. 20.
    Kontson, K.L.K.L., Megjhani, M., Brantley, J.A.J.A., et al.: Your brain on art: emergent cortical dynamics during aesthetic experiences. Front. Hum. Neurosci. 9, 626 (2015).  https://doi.org/10.3389/fnhum.2015.00626CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kovacevic, N., Ritter, P., Tays, W., et al.: ‘My Virtual Dream’: collective neurofeedback in an immersive art environment. PLoS ONE 10, e0130129 (2015)CrossRefGoogle Scholar
  22. 22.
    Lotte, F., Bougrain, L., Cichocki, A., et al.: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)Google Scholar
  23. 23.
    Luu, T.P., Brantley, J.A., Nakagome, S., et al.: Electrocortical correlates of human level-ground, slope, and stair walking. PLoS One (2017).  https://doi.org/10.1371/journal.pone.0188500
  24. 24.
    Mace, M.A., Ward, T.: Modeling the creative process: a grounded theory analysis of creativity in the domain of art making. Creat. Res. J. (2002).  https://doi.org/10.1207/s15326934crj1402_5
  25. 25.
    Pickworth, W., Herning, R., Henningfield, J.: Spontaneous EEG changes during tobacco abstinence and nicotine substitution in human volunteers. J. Pharmacol. Exp. Ther. (1989).  https://doi.org/10.1111/gbb.12420
  26. 26.
    Sujatha Ravindran, A., et al.: Assaying neural activity of children during video game play in public spaces: a deep learning approach. J. Neural Eng. 16(3), 036028 (2019).  https://doi.org/10.1088/1741-2552/ab1876
  27. 27.
    Sujatha Ravindran, A., Cruz-Garza, J.G., Kopteva, A., et al.: Multi-modal mobile brain-body imaging (MoBI) dataset for assaying neural and head movement responses associated with creative video game play in children. IEEE Dataport (2017).  https://doi.org/10.21227/H23W88
  28. 28.
    Takeuchi, H., Taki, Y., Hashizume, H., et al.: The association between resting functional connectivity and creativity. Cereb. Cortex (2012).  https://doi.org/10.1093/cercor/bhr371
  29. 29.
    Todd, E., et al.: Self-conscience/physical memory: an immersive, kinetic art installation driven by real-time and archival EEG signals. In Brain Art, pp. 309–323. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-14323-7_11
  30. 30.
    Zhang, Y., Prasad, S., Kilicarslan, A., Contreras-Vidal, J.L.: Multiple kernel based region importance learning for neural classification of gait states from EEG signals. Front. Neurosci. (2017).  https://doi.org/10.3389/fnins.2017.00170

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jesus G. Cruz-Garza
    • 1
    Email author
  • Anastasiya E. Kopteva
    • 1
    • 2
  • Jo Ann Fleischhauer
    • 3
  • Jose L. Contreras-Vidal
    • 1
  1. 1.IUCRC BRAINUniversity of HoustonHoustonUSA
  2. 2.Department of Theater and DanceUniversity of HoustonHoustonUSA
  3. 3.Cullen College of EngineeringUniversity of HoustonHoustonUSA

Personalised recommendations