Advertisement

Structure and Lattice Dynamics of La2Zr2O7 Crystal: Ab Initio Calculation

  • V. A. ChernyshevEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11622)

Abstract

Crystal structure and phonon spectrum of rare-earth zirconate La2Zr2O7 as well as the whole row R2Zr2O7 (R = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were studied within the framework of density functional theory and MO LKAO approach. The calculations were performed by using hybrid functionals that take into account both local and nonlocal (at the Hartree-Fock formalism) exchanges. Calculations were performed with the most used functionals B3LYP and PBE0. The calculations were also carried out with the functional PBESOL0. The fundamental vibration frequencies of R2Zr2O7 were calculated. The calculations were performed in the CRYSTAL17 program designed to simulate periodic structures.

Keywords

Phonon spectrum Ab initio DFT Hybrid functionals 

Notes

Acknowledgments

This study was supported by the Ministry of Education and Science of the Russian Federation (project no. 3.9534.2017/8.9).

References

  1. 1.
    Pokhrel, M., Alcoutlabi, M., Mao, Y.: Optical and X-ray induced luminescence from Eu3 + doped La2Zr2O7 nanoparticles. J. Alloys Compd. 693, 719–729 (2017)CrossRefGoogle Scholar
  2. 2.
    Hatnean, M.C., Decorse, C., Lees, M.R., Petrenko, O.A., Balakrishnan, G.: Zirconate pyrochlore frustrated magnets: crystal growth by the floating zone technique. Crystals 6(7), 79 (2016)CrossRefGoogle Scholar
  3. 3.
    Popov, V.V., et al.: Features of formation and evolution of crystal and local structures in nanocrystalline Ln2Zr2O7 (Ln = La - Tb). J. Phys: Conf. Ser. 941(1), 012079 (2017)Google Scholar
  4. 4.
    Kong, L., Karatchevtseva, I., Gregg, D.J., Blackford, M.G., Holmes, R., Triani, G.: A novel chemical route to prepare La2Zr2O7 Pyrochlore. J. Am. Ceram. Soc. 96(3), 935–941 (2013)CrossRefGoogle Scholar
  5. 5.
    Modeshia, D.R., Walton, R.I.: Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions. Chem. Soc. Rev. 49(11), 4303–4325 (2010)CrossRefGoogle Scholar
  6. 6.
    Chen, A., Smith, J.R., Duncan, K.L., DeHoff, R.T., Jones, K.S., Wachsman, E.D.: Effect of La2Zr2O7 on interfacial resistance in solid oxide fuel cells. J. Electrochem. Soc. 157(11), B1624–B1628 (2010)CrossRefGoogle Scholar
  7. 7.
    Shimamura, K., Arima, T., Idemitsu, K., Inagaki, Y.: Thermophysical properties of rare-earth-stabilized zirconia and zirconate pyrochlores as surrogates for actinide-doped zirconia. Int. J. Thermophysics. 28(3), 1074–1084 (2007)CrossRefGoogle Scholar
  8. 8.
    Paul, B., Singh, K., Jaron, T., Roy, A., Chowdhury, A.: Structural properties and the fluorite–pyrochlore phase transition in La2Zr2O7: the role of oxygen to induce local disordered states. J. Alloys Compd. 686(25), 130–136 (2016)CrossRefGoogle Scholar
  9. 9.
    Subramanian, M., Aravamudan, G., Subba Rao, G.: Oxide pyrochlores - a review. Prog. Solid State Chem. 15(2), 55–143 (1983)CrossRefGoogle Scholar
  10. 10.
    Gundovin, N.V., Spiridonov, F.M., Komissarova, L.N., Petrov, K.I.: The vibrational spectra of zirconates and hafnates of rare-earth elements with pyrochlore structure. Zh. Neorg. Khim. 20, 582–586 (1975)Google Scholar
  11. 11.
    Cheng, X., et al.: Infrared phonon modes and dielectric properties of La2Zr2O7: Comparing thin film to bulk material. Phys. Stat. Sol. (b) 249(4), 854–857 (2011)Google Scholar
  12. 12.
    Tong, Y., Wang, Y., Yu, Z., Wang, X., Yang, X., Lu, L.: Preparation and characterization of pyrochlore La2Zr2O7 nanocrystals by stearic acid method. Mater. Lett. 62(6–7), 889–891 (2008)CrossRefGoogle Scholar
  13. 13.
    Chen, D., Xu, R.: Hydrothermal synthesis and characterization of La2M2O7 (M = Ti, Zr) powders. Mater. Res. Bull. 33(3), 409–417 (1988)CrossRefGoogle Scholar
  14. 14.
    Klee, W.E., Weitz, G.: Infrared spectra of ordered and disordered pyrochlore-type compounds in the series RE2Ti2O7, RE2Zr2O7 and RE2Hf2O7. J. Inorg. Nucl. Chem. 31(8), 2367–2372 (1969)CrossRefGoogle Scholar
  15. 15.
    Rittman, D.R., et al.: Strain engineered pyrochlore at high pressure. Sci. Rep. 7(1), 2236 (2017)CrossRefGoogle Scholar
  16. 16.
    Guo, X., Zhang, J.: First principles study of thermodynamic properties of lanthanum zirconate. Mater. Today Proc. 1, 25–34 (2014)CrossRefGoogle Scholar
  17. 17.
    Feng, J., et al.: Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore. Acta Mater. 59(4), 1742–1760 (2011)CrossRefGoogle Scholar
  18. 18.
    Zhang, S., et al.: Impact of isovalent and aliovalent substitution on the mechanical and thermal properties of Gd2Zr2O7. Sci. Rep. 7(1), 6399 (2017)CrossRefGoogle Scholar
  19. 19.
    Maram, P.S., Ushakov, S.V., Weber, R.J.K., Benmore, C.J., Navrotsky, A.: In situ diffraction from levitated solids under extreme conditions-structure and thermal expansion in the Eu2O3–ZrO2 system. J. Am. Ceram. Soc. 98(4), 1292–1299 (2015)CrossRefGoogle Scholar
  20. 20.
    Pierre, M.L., Orlando, R., Maschio, L., Doll, K., Ugliengo, P., Dovesi, R.: Performance of six functionals (LDA, PBE, PBESOL, B3LYP, PBE0, and WC1LYP) in the simulation of vibrational and dielectric properties of crystalline compounds. The case of forsterite Mg2SiO4. J. Comp. Chem. 32(9), 1775–1784 (2011)CrossRefGoogle Scholar
  21. 21.
    Heyd, J., Scuseria, G.E., Ernzerhof, M.: Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118(8), 8207–8215 (2003)CrossRefGoogle Scholar
  22. 22.
    Benjamin, G.J., Thomas, M.H., Gustavo, E.S.: Screened hybrid density functionals for solid-state chemistry and physics. Phys. Chem. Chem. Phys. 11(3), 443–454 (2009)CrossRefGoogle Scholar
  23. 23.
    Becke, A.D.: Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648–5652 (1993)CrossRefGoogle Scholar
  24. 24.
    Perdew, J.P., Ernzerhof, M., Burke, K.: Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105(2), 9982–9985 (1996)CrossRefGoogle Scholar
  25. 25.
    Burke, K.: Perspective on density functional theory. J. Chem. Phys. 136(15), 150901 (2012)CrossRefGoogle Scholar
  26. 26.
    Dovesi, R., et al.: 2018 CRYSTAL17 User’s Manual. http://www.crystal.unito.it/Manuals/crystal17.pdf
  27. 27.
    Dovesi, R., et al.: Quantum-mechanical condensed matter simulations with CRYSTAL. Comput. Mol. Sci. 8(4), e1360 (2018)CrossRefGoogle Scholar
  28. 28.
    Evarestov, R.A., Bandura, A.V., Aleksandrov, V.E.: Calculations of the electronic structure of crystalline SrZrO3 in the framework of the density-functional theory in the LCAO approximation. Phys. Solid State 47(12), 2248–2256 (2005)CrossRefGoogle Scholar
  29. 29.
    Medvedev, M.G., Bushmarinov, I.S., Sun, J., Perdew, J.P., Lyssenko, K.A.: Density functional theory is straying from the path toward the exact functional. Science 355(6320), 49–52 (2017)CrossRefGoogle Scholar
  30. 30.
    Chernyshev, V.A., Petrov, V.P., Nikiforov, A.E., Agzamova, P.A., Avram, N.M.: Elastic properties of rare earth pyrochlores R2Ti2O7 (R = Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu): Ab initio calculations. Opt. Mater. 72, 565–570 (2017)CrossRefGoogle Scholar
  31. 31.
    Peintinger, M.F., Oliveira, D.V., Bredow, T.: Consistent Gaussian basis sets of triple zeta valence with polarization quality for solid state calculations. J. Comp. Chem. 34(6), 451–459 (2012)CrossRefGoogle Scholar
  32. 32.
  33. 33.
    Valenzano, L., et al.: Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem. Mater. 23(7), 1700–1718 (2011)CrossRefGoogle Scholar
  34. 34.
    Dolg, M., Stoll, H., Savin, A., Preuss, H.: Energy-adjusted pseudopotentials for the rare earth elements. Theor. Chim. Acta. 75(3), 173–194 (1989)CrossRefGoogle Scholar
  35. 35.
    Dolg, M., Stoll, H., Preuss, H.: A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds. Theor. Chim. Acta. 85(6), 441–450 (1993)CrossRefGoogle Scholar
  36. 36.
    Yang, J., Dolg, M.: Valence basis sets for lanthanide 4f-in-core pseudopotentials adapted for crystal orbital ab initio calculations. Theor. Chem. Acc. 113(4), 212–224 (2005)CrossRefGoogle Scholar
  37. 37.
    Weigand, A., Cao, X., Yang, J., Dolg, M.: Quasirelativistic f-in-core pseudopotentials and core-polarization potentials for trivalent actinides and lanthanides: molecular test for trifluorides. Theor. Chem. Acc. 126(3–4), 117–127 (2009)Google Scholar
  38. 38.
    Energy-consistent Pseudopotentials of the Stuttgart. http://www.tc.uni-koeln.de/PP/clickpse.en.html
  39. 39.
    Maschio, L., Kirtman, B., Orlando, R., Rerat, M.: Ab initio analytical infrared intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method. J. Chem. Phys. 137(20), 204113 (2012)CrossRefGoogle Scholar
  40. 40.
    Maschio, L., Kirtman, B., Rerat, M., Orlando, R., Dovesi, R.: Comment on “Ab initio analytical infrared intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method” [J. Chem. Phys. 137, 204113 (2012)]. J. Chem. Phys. 139, 164101 (2013)CrossRefGoogle Scholar
  41. 41.
    Maschio, L., Kirtman, B., Rerat, M., Orlando, R., Dovesi, R.: Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. II. Validation and comparison with experiments. J. Chem. Phys. 139(16), 164102 (2013)CrossRefGoogle Scholar
  42. 42.
    Orlando, R., Lacivita, V., Bast, R., Ruud, K.: Calculation of the first static hyperpolarizability tensor of three-dimensional periodic compounds with a local basis set: a comparison of LDA, PBE, PBE0, B3LYP, and HF results. J. Chem. Phys. 132(24), 244106 (2010)CrossRefGoogle Scholar
  43. 43.
    Dovesi, R., et al.: CRYSTAL14: a program for the ab initio investigation of crystalline solids. Int. J. Quant. Chem. 114(19), 1287–1317 (2014)CrossRefGoogle Scholar
  44. 44.
    Perdew, J.P., et al.: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100(13), 136406 (2008)CrossRefGoogle Scholar
  45. 45.
    Gao, B., et al.: Experimental signatures of a three-dimensional quantum spin liquid in effective spin-1/2 Ce2Zr2O7 pyrochlore (2019). https://arxiv.org/abs/1901.10092
  46. 46.
    Xu, J., et al.: Magnetic structure and crystal-field states of the pyrochlore antiferromagnet Nd2Zr2O7. Phys. Rev. B 92(22), 224430 (2015)CrossRefGoogle Scholar
  47. 47.
    Li, X., et al.: Long-range antiferromagnetic order in the frustrated XY pyrochlore antiferromagnet Er2Ge2O7. Phys. Rev. B 89(6), 064409 (2014)CrossRefGoogle Scholar
  48. 48.
    Kaspar, T.C., et al.: Damage evolution of ion irradiated defected-fluorite La2Zr2O7 epitaxial thin films. Act. Mater. 130, 111–120 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Ural Federal UniversityEkaterinburgRussia

Personalised recommendations