Advertisement

Distributed Shortest Paths on Power Law Networks in the Generalized Linear Preference Model: An Experimental Study

  • Mattia D’Emidio
  • Daniele FrigioniEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11620)

Abstract

The problem of computing, in a distributed fashion, the shortest paths of a dynamic graph is a core functionality of modern communication networks. Distance vector algorithms are widely adopted solutions for this problem when scalability and reliability are key issues or when nodes have limited hardware resources, as they result very competitive in terms of memory and computational requirements. In this paper, we first discuss some recent distance vector solutions, and then present the results of an ongoing experimental study, conducted on a prominent category of networks, namely generalized linear preference power-law networks, to rank the performance of such solutions.

References

  1. 1.
    Albert, R., Barabási, A.-L.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. Nature 406, 378–381 (2000)CrossRefGoogle Scholar
  3. 3.
    Bu, T., Towsley, D.: On distinguishing between internet power law topology generators. In: Proceedings IEEE INFOCOM, pp. 638–647 (2002)Google Scholar
  4. 4.
    Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Maurizio, V.: Engineering a new algorithm for distributed shortest paths on dynamic networks. Algorithmica 66(1), 51–86 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    D’Angelo, G., D’Emidio, M., Frigioni, D.: Fully dynamic update of arc-flags. Networks 63(3), 243–259 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    D’Angelo, G., D’Emidio, M., Frigioni, D.: A loop-free shortest-path routing algorithm for dynamic networks. Theor. Comput. Sci. 516, 1–19 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    D’Angelo, G., D’Emidio, M., Frigioni, D.: Distance queries in large-scale fully dynamic complex networks. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.) IWOCA 2016. LNCS, vol. 9843, pp. 109–121. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44543-4_9CrossRefGoogle Scholar
  8. 8.
    D’Angelo, G., D’Emidio, M., Frigioni, D.: Fully dynamic 2-hop cover labeling. J. Exp. Algorithmics 24(1), 1.6:1–1.6:36 (2019)MathSciNetzbMATHGoogle Scholar
  9. 9.
    D’Angelo, G., D’Emidio, M., Frigioni, D., Maurizio, V.: A speed-up technique for distributed shortest paths computation. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011. LNCS, vol. 6783, pp. 578–593. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21887-3_44CrossRefGoogle Scholar
  10. 10.
    D’Angelo, G., D’Emidio, M., Frigioni, D., Romano, D.: Enhancing the computation of distributed shortest paths on power-law networks in dynamic scenarios. Theory Comput.Syst. 57(2), 444–477 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Elkin, M.: Distributed exact shortest paths in sublinear time. In: Proceedings of 49th Annual Symposium on Theory of Computing (STOC 2017), pp. 757–770. ACM (2017)Google Scholar
  12. 12.
    Garcia-Lunes-Aceves, J.J.: Loop-free routing using diffusing computations. IEEE/ACM Trans. Netw. 1(1), 130–141 (1993)CrossRefGoogle Scholar
  13. 13.
    Humblet, P.A.: Another adaptive distributed shortest path algorithm. IEEE Trans. Commun. 39(6), 995–1002 (1991)CrossRefGoogle Scholar
  14. 14.
    Hyun, Y., et al.: The CAIDA IPv4 routed/24 topology dataset. http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
  15. 15.
    Moy, J.T.: OSPF: Anatomy of an Internet Routing Protocol. Addison-Wesley, Boston (1998)Google Scholar
  16. 16.
    OMNeT++. Discrete event simulation environment. http://www.omnetpp.org
  17. 17.
    Rosen, E.C.: The updating protocol of ARPANET’S new routing algorithm. Comput. Netw. 4, 11–19 (1980)Google Scholar
  18. 18.
    Ray, S., Guérin, R., Kwong, K., Sofia, R.: Always acyclic distributed path computation. IEEE/ACM Trans. Netw. 18(1), 307–319 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Information Engineering, Computer Science and MathematicsUniversity of L’AquilaL’AquilaItaly

Personalised recommendations