Role of HSP in the Treatment of Internal Diseases

  • Ozden Yildirim Akan
  • Pinar Ortan
  • Ferda Hosgorler
Part of the Heat Shock Proteins book series (HESP, volume 20)


Heat shock proteins (HSP) take their name from their apparent accidental discovery following transient heat stress in the salivary glands of Drosophila melanogaster (5 °C above normal temperature) HSP. All cells, from bacteria to human, have a common, complicated response to stress that protects them from injury. HSP play a major role in that response. HSP, protect the structure of normal proteins and plays a role in repairing or removing damaged ones. HSP response shows similar effects when faced with stressor conditions, such as oxidative stress, glucose deprivation, and infection, which lead to the misfolding of intracellular proteins. HSP participate in protein prevention from denaturation, repair, degradation of non-repairable ones, cell signal and response formation in the stress situations. Because of their important function in both physiological and pathological fields, it is possible to develop treatment strategies in many areas related to internal medicine. Current Data strongly supports efforts to target HSP in many diseases, mostly oncology. Drugs that make chaperone antagonism, such as Hsp90 inhibitors, reverse the damage caused by overexpressed HSP by helping to break down oncogenes. Treatment with HSP vaccines or HSP antagonists are in phase III trials in both inflammatory diseases and cancer treatment. Further studies will enable it to take its place in the treatment of inflammatory diseases and cancer.


Apoptosis Cancer therapy Gastrointestinal disease Heat shock protein HSP vaccines Internal medicine 



advanced glycation end products


apoptotic protease activating factor 1


death effector domain


endothelial nitric oxide synthase




growth hormone releasing peptide-6




heat shock factor


heat shock proteins


heat shock protein-peptide complex-96


inducible nitric oxide synthase


major histocompatibility complex


nitric oxide


nucleotide-binding oligomerization domain-containing protein 2


non steroid antiinflammatory drug


non-small cell lung cancer






reactive oxygen species


tissue transglutaminase 2


toll-like receptor 4


regulatory T cells


water immersion stress



We want to thank Ozgur Golgelioglu for his help preparing the review.


  1. Abou El Azm AR, Yousef M, Kobtan A, Awad A, Elkassas G, Elfert A (2015) Colonic mucosal expression of heat-shock proteins may have a potential prognostic value in ulcerative colitis. Arab J Gastroenterol 16:20–24PubMedCrossRefGoogle Scholar
  2. Ambade A, Catalano D, Lim A, Kopoyan A, Shaffer SA, Mandrekar P (2014) Inhibition of heat shock protein 90 alleviates steatosis and macrophage activation in murine alcoholic liver injury. J Hepatol 61:903–911PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ampie L, Choy W, Lamano JB et al (2015) Heat shock protein vaccines against glioblastoma: from bench to bedside. J Neurooncol 123:441PubMedPubMedCentralCrossRefGoogle Scholar
  4. Atalay M, Oksala NK, Laaksonen DE et al (2004) Exercise training modulates heat shock protein response in diabetic rats. J Appl Physiol 97:605–611PubMedCrossRefGoogle Scholar
  5. Balog A, Gyulai Z, Boros LG et al (2005) Polymorphism of the TNF-alpha, HSP70-2, and CD14 genes increases susceptibility to severe acute pancreatitis. Pancreas 30:e46–e50PubMedCrossRefGoogle Scholar
  6. Beere HM (2004) ‘The stress of dying’: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 117:2641–2651PubMedCrossRefGoogle Scholar
  7. Bhagat L, Saluja KA, Akella U et al (2000) Role of calcium in lysosomal enzyme redistrmution and intra-acinar cell activation of trypsinogen in an in vitro model of pancreatitis. Gastroenterology 118. Scholar
  8. Bhagat L, Singh VP, Dawra RK, Saluja AK (2008) Sodium arsenite induces heat shock protein70 expression and protects against secretagogue-induced trypsinogen and NF-kappaB activation. J Cell Physiol 215:37–46PubMedCrossRefGoogle Scholar
  9. Bhopale KK, Amer SM, Kaphalia L et al (2017) Proteins differentially expressed in the pancreas of hepatic alcohol dehydrogenase-deficient deer mice fed ethanol for 3 months. Pancreas 46:806–812PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bidel S, Mustonen H, Khalighi-Sikaroudi G et al (2005) Effect of the ulcerogenic agents ethanol, acetylsalicylic acid and taurocholate on actin cytoskeleton and cell motility in cultured rat gastric mucosal cells. World J Gastroenterol 11:4032–4039PubMedPubMedCentralCrossRefGoogle Scholar
  11. Biro K, Jednakovits A, Kukorelli T, Hegedüs E, Koranyi L (1997) Bimoclomol (BRLP-42) ameliorates peripheral neuropathy in streptozotocin-induced diabetic rats. Brain Res Bull 44:259–263PubMedCrossRefGoogle Scholar
  12. Bonior J, Warzecha Z, Ceranowicz P et al (2017) Capsaicin-Sensitive Sensory Nerves Are Necessary for the Protective Effect of Ghrelin in Cerulein-Induced Acute Pancreatitis in Rats. Int J Mol Sci 18. Scholar
  13. Borges TJ, Lopes RL, Pinho NG, Machado FD, Souza AP, Bonorino C (2013) Extracellular Hsp70 inhibits pro-inflammatory cytokine production by IL-10 driven down-regulation of C/EBPβ and C/EBPδ. Int J Hyperth 29:455–463CrossRefGoogle Scholar
  14. Boroumand N, Saghi H, Avan A et al (2018) Therapeutic potency of heat-shock protein-90 pharmacological inhibitors in the treatment of gastrointestinal cancer, current status and perspectives. J Pharm Pharmacol 70:151–158PubMedCrossRefGoogle Scholar
  15. Broadley SA, Vanags D, Williams B et al (2009) Results of a phase IIa clinical trial of an anti-inflammatory molecule, chaperonin 10, in multiple sclerosis. Mult Scler (Houndmills, Basingstoke, England) 15:329–336CrossRefGoogle Scholar
  16. Byrne CR, Hanson PJ (1998) Induction of heat shock protein 72 by a nitric oxide donor in guinea-pig gastric mucosal cells. Eur J Pharmacol 353:117–122PubMedCrossRefGoogle Scholar
  17. Calderwood SK, Gong J (2016) Heat shock proteins promote cancer: it’s a protection racket. Trends Biochem Sci 41:311–323PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cercek A, Shia J, Gollub M, Chou JF et al (2014) Ganetespib, a novel Hsp90 inhibitor in patients with KRAS mutated and wild type, refractory metastatic colorectal cancer. Clin Colorectal Cancer 13:207–212PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cha B, Lim JW, Kim KH, Kim H (2010) HSP90beta interacts with Rac1 to activate NADPH oxidase in Helicobacter pylori-infected gastric epithelial cells. Int J Biochem Cell Biol 42:1455–1461PubMedCrossRefGoogle Scholar
  20. Charette SJ, Landry J (2000) The interaction of HSP27 with Daxx identifies a potential regulatory role of HSP27 in Fas-induced apoptosis. Ann N Y Acad Sci 926:126–131PubMedCrossRefGoogle Scholar
  21. Chatterjee S, Burns TF (2017) Targeting heat shock proteins in cancer: a promising therapeutic approach. Int J Mol Sci 18:1978PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chaudhury TK, Robert A (1980) Prevention by mild irritants of gastric necrosis produced in rats by sodium taurocholate. Dig Dis Sci 25:830–836PubMedCrossRefGoogle Scholar
  23. Chionh YT, Arulmuruganar A, Venditti E et al (2014) Heat shock protein complex vaccination induces protection against Helicobacter pylori without exogenous adjuvant. Vaccine 32:2350–2358PubMedCrossRefGoogle Scholar
  24. Choi SR, Lee SA, Kim YJ, Ok CY, Lee HJ, Hahm KB (2009) Role of heat shock proteins in gastric inflammation and ulcer healing. J Physiol Pharmacol Off J Polish Physiol Soc 60(Suppl 7):5–17Google Scholar
  25. Chung J, Nguyen AK, Henstridge DC et al (2008) HSP72 protects against obesityinduced insulin resistance. Proc Natl Acad Sci U S A 105:1739–1744PubMedPubMedCentralCrossRefGoogle Scholar
  26. Collins C, Zeng PY, Yeckes A, Pound K, de Zoeten E (2011) Selective inhibition of N-terminal ATPase on HSP90 attenuates colitis through enhanced Treg function P-191. Inflamm Bowel Dis 17:S69–S70CrossRefGoogle Scholar
  27. Collins CB, Aherne CM, Yeckes A et al (2013) Inhibition of N-terminal ATPase on HSP90 attenuates colitis through enhanced Treg function. Mucosal Immunol 6:960–971PubMedPubMedCentralCrossRefGoogle Scholar
  28. Davis BJ, Xie Z, Viollet B, Zou MH (2006) Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes 55:496–505PubMedCrossRefGoogle Scholar
  29. Dawra R, Sah RP, Dudeja V et al (2011) Intra-acinar trypsinogen activation mediates early stages of pancreatic injury but not inflammation in mice with acute pancreatitis. Gastroenterology 141:2210.e2–2217.e2CrossRefGoogle Scholar
  30. Dudeja V, Vickers SM, Saluja AK (2009) The role of heat shock proteins in gastrointestinal diseases. Gut 58:1000–1009PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dutta SK, Girotra M, Singla M et al (2012) Serum HSP70: a novel biomarker for early detection of pancreatic cancer. Pancreas 41:530–534PubMedPubMedCentralCrossRefGoogle Scholar
  32. Ebert MP, Schafer C, Chen J et al (2005) Protective role of heat shock protein 27 in gastric mucosal injury. J Pathol 207:177–184PubMedCrossRefGoogle Scholar
  33. Ehrlich K, Sicking C, Respondek M, Peskar BM (2004) Interaction of cyclooxygenase isoenzymes, nitric oxide, and afferent neurons in gastric mucosal defense in rats. J Pharmacol Exp Ther 308:277–283PubMedCrossRefGoogle Scholar
  34. Elias D, Reshe TF, Birk OS, van der Zee R, Walker MD, Cohen IR, PNAS (1991) Vaccination against autoimmune mouse diabetes with a T-cell epitope of the human 65-kDa heat shock protein. Proc Natl Acad Sci U S A 88(8):3088–3091PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ethridge RT, Hellmich MR, DuBois RN, Evers BM (1998) Inhibition of heat-shock protein70 induction in intestinal cells overexpressing cyclooxygenase 2. Gastroenterology 115:1454–1463PubMedCrossRefGoogle Scholar
  36. Fennell D, Danson S, Forster M et al (2018) MA12.05 phase 1 study of HSP90 inhibitor ganetespib with pemetrexed and cisplatin/carboplatin chemotherapy for pleural mesothelioma. J Thorac Oncol 13(10):397CrossRefGoogle Scholar
  37. Francisco JQ, Asaf R, Carmi P, Cohen IR (2000) Vaccination with empty plasmid DNA or CpG oligonucleotide inhibits diabetes in nonobese diabetic mice: modulation of spontaneous 60-kDa heat shock protein autoimmunity. J Immunol 165(11):6148–6155CrossRefGoogle Scholar
  38. Frossard JL, Bhagat L, Lee HS et al (2002) Both thermal and non-thermal stress protect against caerulein induced pancreatitis and prevent trypsinogen activation in the pancreas. Gut 50:78–83PubMedPubMedCentralCrossRefGoogle Scholar
  39. Garcia-Cardena G, Fan R, Shah V et al (1998) Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392:821–824PubMedCrossRefGoogle Scholar
  40. Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E (1999) HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J Off Publ Fed Am Soc Exp Biol 13:2061–2070Google Scholar
  41. Guo S, Gao Q, Jiao Q, Hao W, Gao X, Cao JM (2012) Gastric mucosal damage in water immersion stress: mechanism and prevention with GHRP-6. World J Gastroenterol 18:3145–3155PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gupte AA, Bomhoff GL, Swerdlow RH, Geiger PC (2009) Heat treatment improves glucose tolerance and prevents skeletal muscle insulin resistance in rats fed a high-fat diet. Diabetes 58:567–578PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hanson BE, Vesole DH (2009) Retaspimycin hydrochloride (IPI-504): a novel heat shock protein inhibitor as ananticancer agent. Expert Opin Investig Drugs 18:1375–1383PubMedCrossRefGoogle Scholar
  44. Hendriks LEL, Dingemans AC (2017) Heat shock protein antagonists in early stage clinical trials for NSCLC. Expert Opin Investig Drugs 26(5):541–550PubMedCrossRefGoogle Scholar
  45. Hirakawa T, Rokutan K, Nikawa T, Kishi K (1996) Geranylgeranylacetone induces heat shock proteins in cultured guinea pig gastric mucosal cells and rat gastric mucosa. Gastroenterology 111:345–357PubMedCrossRefGoogle Scholar
  46. Ikwegbue PC, Masamba P, Oyinloye BE (2017) Roles of heat shock proteins in apoptosis, oxidative stress human inflammatory diseases, and cancer. Pharmaceuticals (Basel) 23:11Google Scholar
  47. Inoue T, Yorifuji N, Iguchi M et al (2015) Geranylgeranylacetone suppresses colitisrelated mouse colon carcinogenesis. Oncol Rep 33:1769–1774PubMedCrossRefGoogle Scholar
  48. Ishihara T, Suemasu S, Asano T, Tanaka K, Mizushima T (2011) Stimulation of gastric ulcer healing by heat shock protein70. Biochem Pharmacol 82:728–736PubMedCrossRefGoogle Scholar
  49. Itoh YH, Noguchi R (2000) Pre-treatment with mild whole-body heating prevents gastric ulcer induced by restraint and water-immersion stress in rats. Int J Hyperth 16:183–191CrossRefGoogle Scholar
  50. Jacquemin G, Granci V, Gallouet AS et al (2012) Quercetin-mediated Mcl-1 and survivin downregulation restores TRAIL-induced apoptosis in non-Hodgkin’s lymphoma B cells. Haematologica 97:38–46PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jafarnejad A, Bathaie SZ, Nakhjavani M, Hassan MZ, Banasadegh S (2008) The improvement effect of L-Lys as a chemical chaperone on STZ-induced diabetic rats, protein structure and function. Diabetes Metab Res Rev 24:64–73PubMedCrossRefGoogle Scholar
  52. Jhaveri K, Ochiana SO, Dunphy MPS et al (2014) Heat shock protein 90 inhibitors in the treatment of cancer: current status and future directions. Expert Opin Investig Drugs 23:611–628PubMedPubMedCentralCrossRefGoogle Scholar
  53. Jin M, Otaka M, Okuyama A et al (1999) Association of 72-kDa heat shock protein expression with adaptation to aspirin in rat gastric mucosa. Dig Dis Sci 44:1401–1407PubMedCrossRefGoogle Scholar
  54. Johnson ML, Yu HA, Hart EM et al (2015) Phase I/II study of HSP90 inhibitor AUY922 and erlotinib for EGFR-mutant lung cancer with acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors. J Clin Oncol 33(15):1666–1673PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jurivich DA, Sistonen L, Kroes RA, Morimoto RI (1992) Effect of sodium salicylate on the human heat shock response. Science 255:1243–1245PubMedCrossRefGoogle Scholar
  56. Kelly M, McNeel D, Fisch P, Malkovsk I, M. (2018) Immunological considerations underlying heat shock protein-mediated cancer vaccine strategies. Immunol Lett 193:1–10PubMedCrossRefGoogle Scholar
  57. Kiang JG, Ding XZ, McClain DE (1998) Overexpression of HSP-70 attenuates increases in [Ca2+]i and protects human epidermoid A-431 cells after chemical hypoxia. Toxicol Appl Pharmacol 149:185–194PubMedCrossRefGoogle Scholar
  58. Kim D, Kim SH, Li GC (1999) Proteasome inhibitors MG132 and lactacystin hyperphosphorylate HSF1 and induce hsp70 and hsp27 expression. Biochem Biophys Res Commun 254:264–268PubMedCrossRefGoogle Scholar
  59. Kim YS, Jeong M, Han YM et al (2018) Combined extracts of artemisia and green tea, mitigated alcoholic gastritis via enhanced heat-shock protein 27. Korean J Gastroenterol = Taehan Sohwagi Hakhoe chi 71:132–142PubMedCrossRefGoogle Scholar
  60. Kojima K, Musch MW, Ren H et al (2003) Enteric flora and lymphocyte-derived cytokines determine expression of heat shock proteins in mouse colonic epithelial cells. Gastroenterology 124:1395–1407PubMedCrossRefGoogle Scholar
  61. Kondo T, Ono K, Kitano S et al (2014) Mild electrical stimulation with heat shock reduces visceral adiposity and improves metabolic abnormalities in subjects with metabolic syndrome or type 2 diabetes: randomized crossover trials. EBio Med 1:80–89Google Scholar
  62. Konturek PC (1997) Physiological, immunohistochemical and molecular aspects of gastric adaptation to stress, aspirin and to H. pylori-derived gastrotoxins. J Physiol Pharmacol Off J Polish Physiol Soc 48:3–42Google Scholar
  63. Konturek PC, Brzozowski T, Konturek SJ et al (1999) Apoptosis in gastric mucosa with stress-induced gastric ulcers. J Physiol Pharmacol Off J Polish Physiol Soc 50:211–225Google Scholar
  64. Koren J 3rd, Jinwal UK, Jin Y et al (2010) Facilitating Akt clearance via manipulation of Hsp70 activity and levels. J Biol Chem 285:2498–2505PubMedCrossRefGoogle Scholar
  65. Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol (Bethesda, Md: 1985) 92:2177–2186CrossRefGoogle Scholar
  66. Kurucz I, Morva Á, Vaag A et al (2002) Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes 51:1102–1109PubMedCrossRefGoogle Scholar
  67. Laine L, Takeuchi K, Tarnawski A (2008) Gastric mucosal defense and cytoprotection: bench to bedside. Gastroenterology 135:41–60PubMedCrossRefGoogle Scholar
  68. Lee HS, Bhagat L, Frossard JL et al (2000) Water immersion stress induces heat shock protein 60 expression and protects against pancreatitis in rats. Gastroenterology 119:220–229PubMedCrossRefGoogle Scholar
  69. Lee JS, Oh TY, Kim YK et al (2005) Protective effects of green tea polyphenol extracts against ethanol-induced gastric mucosal damages in rats: stress-responsive transcription factors and MAP kinases as potential targets. Mutat Res 579:214–224PubMedCrossRefGoogle Scholar
  70. Leung AM, Redlak MJ, Miller TA (2015) Role of heat shock proteins in oxygen radical–induced gastric apoptosis. J Surg Res 193:135–144PubMedCrossRefGoogle Scholar
  71. Liao WC, Wu MS, Wang HP, Tien YW, Lin JT (2009) Serum heat shock protein 27 is increased in chronic pancreatitis and pancreatic carcinoma. Pancreas 38:422–426PubMedCrossRefGoogle Scholar
  72. Liu WL, Chen SJ, Chen Y et al (2007) Protective effects of heat shock protein70 induced by geranylgeranylacetone in atrophic gastritis in rats. Acta Pharmacol Sin 28:1001–1006PubMedCrossRefGoogle Scholar
  73. Lopez-Belmonte J, Whittle BJ, Moncada S (1993) The actions of nitric oxide donors in the prevention or induction of injury to the rat gastric mucosa. Br J Pharmacol 108:73–78PubMedPubMedCentralCrossRefGoogle Scholar
  74. Ma L, Wallace J (2000) Endothelial nitric oxide synthase modulates gastric ulcer healing in rats. Am J Physiol Gastrointest Liver Physiol 279(2):341–346CrossRefGoogle Scholar
  75. Mahmoud FF, Haines D, Dashti AA, El-Shazly S, Al-Najjar F (2018) Correlation between heat shock proteins, adiponectin, and T lymphocyte cytokine expression in type 2 diabetics. Cell Stress Chaperones 23:955–965PubMedPubMedCentralCrossRefGoogle Scholar
  76. Meldrum KK, Burnett AL, Meng X et al (2003) Liposomal delivery of heat shock protein 72 into renal tubular cells blocks nuclear factor-kappa B activation, tumor necrosis factor-alpha production, and subsequent ischemia-induced apoptosis. Circ Res 92:293–299PubMedCrossRefGoogle Scholar
  77. Minalyan A, Benhammou JN, Artashesyan A, Lewis MS, Pisegna JR (2017) Autoimmune atrophic gastritis: current perspectives. Clin Exp Gastroenterol 10:19–27PubMedPubMedCentralCrossRefGoogle Scholar
  78. Mirmiranpour H, Khaghani S, Bathaie SZ et al (2016) The preventive effect of L-lysine on lysozyme glycation in type 2 diabetes. Acta Med Iran 54:24–31PubMedGoogle Scholar
  79. Mobley HL (1996) The role of Helicobacter pylori urease in the pathogenesis of gastritis and peptic ulceration. Aliment Pharmacol Ther 10(Suppl 1):57–64PubMedCrossRefGoogle Scholar
  80. Mohanan V, Grimes CL (2014) The molecular chaperone HSP70 binds to and stabilizes NOD2, an important protein involved in Crohn disease. J Biol Chem 289:18987–18998PubMedPubMedCentralCrossRefGoogle Scholar
  81. Moses MA, Henry EC, Ricke WA, Gasiewiczet TA (2015) The heat shock protein 90 inhibitor, (−)-epigallocatechin gallate, has anticancer activity in a novel human prostate cancer progression model. Cancer Prev Res 8(3):249–257CrossRefGoogle Scholar
  82. Muili KA, Wang D, Orabi AI et al (2013) Bile acids induce pancreatic acinar cell injury and pancreatitis by activating calcineurin. J Biol Chem 288:570–580PubMedCrossRefGoogle Scholar
  83. Nagata Y, Kudo M, Nagai T et al (2013) Heat shock protein 27 expression is inversely correlated with atrophic gastritis and intraepithelial neoplasia. Dig Dis Sci 58:381–388PubMedCrossRefGoogle Scholar
  84. Nakamura K, Rokutan K, Marui N, Aoike A, Kawai K (1991) Induction of heat shock proteins and their implication in protection against ethanol-induced damage in cultured guinea pig gastric mucosal cells. Gastroenterology 101:161–166PubMedCrossRefGoogle Scholar
  85. Nakhjavani M, Morteza A, Khajeali L, Esteghamati A, Khalilzadeh O, Asgarani F, Outeiro TF (2010) Increased serum HSP70 levels are associated with the duration of diabetes. Cell Stress Chaperones 15:959–964PubMedPubMedCentralCrossRefGoogle Scholar
  86. Nanasi P, Jednakovits A (2001) Multilateral in vivo and in vitro protective effects of the novel heat shock protein coinducer, bimoclomol: results of preclinical studies. Cardiovasc Drug Rev 19:133–151PubMedCrossRefGoogle Scholar
  87. Ogura Y, Bonen DK, Inohara N et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603–606PubMedCrossRefGoogle Scholar
  88. Ohkawara T, Takeda H, Kato K et al (2005) Polaprezinc (N-(3-aminopropionyl)-L-histidinato zinc) ameliorates dextran sulfate sodium-induced colitis in mice. Scand J Gastroenterol 40:1321–1327PubMedCrossRefGoogle Scholar
  89. Ohkawara T, Nishihira J, Takeda H et al (2006) Protective effect of geranylgeranylacetone on trinitrobenzene sulfonic acid-induced colitis in mice. Int J Mol Med 17:229–234PubMedGoogle Scholar
  90. Parimi S, Tsang RY (2014) Hsp90 inhibitors in oncology: ready for prime time? Curr Oncol 21(5):663–667CrossRefGoogle Scholar
  91. Paul C, Manero F, Gonin S, Kretz-Remy C, Virot S, Arrigo A-P (2002) Hsp27 as a negative regulator of cytochrome <em>c</em> release. Mol Cell Biol 22:816–834PubMedPubMedCentralCrossRefGoogle Scholar
  92. Rakonczay Z, Takacs T, Ivanyi B et al (2002a) Induction of heat shock proteins fails to produce protection against trypsin-induced acute pancreatitis in rats. Clin Exp Med 2:89–97PubMedCrossRefGoogle Scholar
  93. Rakonczay Z, Ivanyi B, Varga I et al (2002b) Nontoxic heat shock protein coinducer BRX-220 protects against acute pancreatitis in rats. Free Radic Biol Med 32:1283–1292PubMedCrossRefGoogle Scholar
  94. Ramalingam SS, Zaric B, Ceric T et al (2014) Galaxy-2 trial (NCT01798485): a randomized phase 3 study of ganetespib in combination with docetaxel versus docetaxel alone in patients with advanced lung adenocarcinoma. J Clin Oncol 32:8118CrossRefGoogle Scholar
  95. Rane MJ, Pan Y, Singh S et al (2003) Heat shock protein 27 controls apoptosis by regulating Akt activation. J Biol Chem 278:27828–27835PubMedCrossRefGoogle Scholar
  96. Rokutan K (2000) Role of heat shock proteins in gastric mucosal protection. J Gastroenterol Hepatol 15(Suppl):12–19CrossRefGoogle Scholar
  97. Rosas PC, Nagaraja GM, Kaur P et al (2016) Hsp72 (HSPA1A) prevents human islet amyloid polypeptide aggregation and toxicity: a new approach for type 2 diabetes treatment. PloS One 9(3). Scholar
  98. Sahasrabudhe P, Rohrberg J, Biebl MM, Rutz DA, Buchner J (2017) The plasticity of the Hsp90 co-chaperone system. Mol Cell 67:947.e5–961.e5CrossRefGoogle Scholar
  99. Saluja A, Dudeja V (2008) Heat shock proteins in pancreatic diseases. J Gastroenterol Hepatol 23(Suppl 1):S42–S45PubMedCrossRefGoogle Scholar
  100. Saluja AK, Donovan EA, Yamanaka K, Yamaguchi Y, Hofbauer B, Steer ML (1997) Cerulein-induced in vitro activation of trypsinogen in rat pancreatic acini is mediated by cathepsin B. Gastroenterology 113:304–310PubMedCrossRefGoogle Scholar
  101. Saluja AK, Lerch MM, Phillips PA, Dudeja V (2007) Why does pancreatic overstimulation cause pancreatitis? Annu Rev Physiol 69:249–269PubMedCrossRefGoogle Scholar
  102. Shevtsov M, Multhoff G (2016) Heat shock protein–peptide and HSP-based immunotherapies for the treatment of cancer. Front Immunol 7:171PubMedPubMedCentralGoogle Scholar
  103. Shichijo K, Ihara M, Matsuu M, Ito M, Okumura Y, Sekine I (2003) Overexpression of heat shock protein70 in stomach of stress-induced gastric ulcer-resistant rats. Dig Dis Sci 48:340–348PubMedCrossRefGoogle Scholar
  104. Shrestha, L., Bolaender, A., . Patel, H. J., Taldone, T. (2016) Heat shock protein (HSP) drug discovery and development: targeting heat shock proteins in disease. Curr Top Med Chem 16(25), 2753–2764PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sidahmed HM, Azizan AH, Mohan S et al (2013) Gastroprotective effect of desmosdumotin C isolated from Mitrella kentii against ethanol-induced gastric mucosal hemorrhage in rats: possible involvement of glutathione, heat-shock protein-70, sulfhydryl compounds, nitric oxide, and anti-Helicobacter pylori activity. BMC Complement Altern Med 13:183PubMedPubMedCentralCrossRefGoogle Scholar
  106. Soncin F, Calderwood SK (1996) Reciprocal effects of pro-inflammatory stimuli and anti-inflammatory drugs on the activity of heat shock factor-1 in human monocytes. Biochem Biophys Res Commun 229:479–484PubMedCrossRefGoogle Scholar
  107. Stangl S, Gehrmann M, Riegger J et al (2011) Targeting membrane heat-shock protein70 (Hsp70) on tumors by cmHsp70.1 antibody. Proc Natl Acad Sci 108:733–738PubMedCrossRefGoogle Scholar
  108. Stulik J, Bures J, Jandik P, Langr F, Kovarova H, Macela A (1997) The different expression of proteins recognized by monoclonal anti-heat shock protein70 (hsp70) antibody in human colonic diseases. Electrophoresis 18:625–628PubMedCrossRefGoogle Scholar
  109. Tahara T, Shibata T, Okubo M et al (2014) Heat-shock protein70-2 BB genotype is associated with reduced risks of the steroid-dependent and refractory phenotypes of ulcerative colitis. Biomed Rep 2:555–558PubMedPubMedCentralCrossRefGoogle Scholar
  110. Takenaka IM, Hightower LE (1992) Transforming growth factor-beta 1 rapidly induces Hsp70 and Hsp90 molecular chaperones in cultured chicken embryo cells. J Cell Physiol 152:568–577PubMedCrossRefGoogle Scholar
  111. Tanaka A, Kamada T, Yokota K et al (2009) Helicobacter pylori heat shock protein 60 antibodies are associated with gastric cancer. Pathol Res Pract 205:690–694PubMedCrossRefGoogle Scholar
  112. Tarnawski AS, Pai R, Szabo IL, Sarfeh I (2000) Antacid talcid induces heat shock proteins in human gastric epithelial cells. Implications for mucosal protection and healing. Gastroenterology 118:A659Google Scholar
  113. Thomas R, Ward TB, Walsh J, Cluning C (2015) Hsp90 as a therapeutic target in endocrinology: current evidence. Res Rep Endocr Disord 5:141–155Google Scholar
  114. Tomasello G, Sciume C, Rappa F et al (2011) Hsp10, Hsp70, and Hsp90 immunohistochemical levels change in ulcerative colitis after therapy. Eur J Histochem, EJH 55:e38PubMedCrossRefGoogle Scholar
  115. Torok Z, Tsvetkova NM, Balogh G et al (2003) Heat shock protein coinducers with no effect on protein denaturation specifically modulate the membrane lipid phase. Proc Natl Acad Sci 100:3131–3136PubMedCrossRefGoogle Scholar
  116. Tsukimi Y, Okabe S (2001) Recent advances in gastrointestinal pathophysiology role of heat shock proteins in mucosal defense and ulcer healing. Biol Pharm Bull 24:1–9PubMedCrossRefGoogle Scholar
  117. Tsuzuki T, Kobayashi H, Yoshihara T, Kakigi R, Ichinoseki-Sekine N, Naito H (2017) Attenuation of exercise-induced heat shock protein 72 expression blunts improvements in whole-body insulin resistance in rats with type 2 diabetes. Cell Stress Chaperones 22:263–269PubMedPubMedCentralCrossRefGoogle Scholar
  118. Tukaj S, Gorog A, Kleszczynski K, Zillikens D, Karpati S, Kasperkiewicz M (2017) Autoimmunity to heat shock proteins and vitamin D status in patients with celiac disease without associated dermatitis herpetiformis. J Steroid Biochem Mol Biol 173:23–27PubMedCrossRefGoogle Scholar
  119. Van Acker GJ, Saluja AK, Bhagat L, Singh VP, Song AM, Steer ML (2002) Cathepsin B inhibition prevents trypsinogen activation and reduces pancreatitis severity. Am J Physiol Gastrointest Liver Physiol 283:G794–G800PubMedCrossRefGoogle Scholar
  120. Vidyasagar A, Wilson NA, Djamali A (2012) Heat shock protein 27 (HSP27): biomarker of disease and therapeutic target. Fibrogenesis & Tissue Repair 5:7–7CrossRefGoogle Scholar
  121. Vigh L, Literati PN, Horvath I et al (1997) Bimoclomol: a nontoxic, hydroxylamine derivative with stress protein-inducing activity and cytoprotective effects. Nat Med 3:1150–1154PubMedCrossRefGoogle Scholar
  122. Wallace JL, Miller MJS (2000) Nitric oxide in mucosal defense: a little goes a long way. Gastroenterology 119:512–520PubMedCrossRefGoogle Scholar
  123. Wallace JL, Zamuner SR, McKnight W et al (2004) Aspirin, but not NO-releasing aspirin (NCX-4016), interacts with selective COX-2 inhibitors to aggravate gastric damage and inflammation. Am J Physiol Gastrointest Liver Physiol 286:G76–G81PubMedCrossRefGoogle Scholar
  124. Wang Y, Lin F, Zhu X et al (2018) Distinct roles of intracellular heat shock protein70 in maintaining gastrointestinal homeostasis. Am J Physiol Gastrointest Liver Physiol 314:G164–Gg78PubMedCrossRefGoogle Scholar
  125. Wayne N, Mishra P, Bolon DN (2011) Hsp90 and client protein maturation. Methods Mol Biol (Clifton, NJ) 787:33–44CrossRefGoogle Scholar
  126. Welsh N, Margulis B, Borg L et al (1995) Differences in the expression of heat-shock proteins and antioxidant enzymes between human and rodent pancreatic islets: Implications for the pathogenesis of insulin-dependent diabetes mellitus. Mol Med 1:806PubMedPubMedCentralCrossRefGoogle Scholar
  127. Wischmeyer PE, Musch MW, Madonna MB, Thisted R, Chang EB (1997) Glutamine protects intestinal epithelial cells: role of inducible HSP70. Am J Physiol 272:G879–G884PubMedGoogle Scholar
  128. Wood C, Srivastava P, Bukowski R et al (2008) An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. Lancet 372:145–154PubMedCrossRefGoogle Scholar
  129. Xie Y-F, Jiao Q, Guo S, Wang F-Z, Cao J-M, Zhang Z-G (2005) Role of parasympathetic overactivity in water immersion stress-induced gastric mucosal lesion in rat. J Appl Physiol 99:2416–2422PubMedCrossRefGoogle Scholar
  130. Yamaguchi H, Osaki T, Kai M, Taguchi H, Kamiya S (2000) Immune response against a cross-reactive epitope on the heat shock protein 60 homologue of Helicobacter pylori. Infect Immun 68:3448–3454PubMedPubMedCentralCrossRefGoogle Scholar
  131. Yeo M, Park HK, Kim DK et al (2004a) Restoration of heat shock protein70 suppresses gastric mucosal inducible nitric oxide synthase expression induced by Helicobacter pylori. Proteomics 4:3335–3342PubMedCrossRefGoogle Scholar
  132. Yeo M, Park HK, Lee KM et al (2004b) Blockage of HSP 90 modulates Helicobacter pylori-induced IL-8 productions through the inactivation of transcriptional factors of AP-1 and NF-kappaB. Biochem Biophys Res Commun 320:816–824PubMedCrossRefGoogle Scholar
  133. Young Oh T, Yeo M, Uk Han S et al (2005) Synergism of Helicobacter pylori infection and stress on the augmentation of gastric mucosal damage and its prevention with α-tocopherol. Free Radic Biol Med 38:1447–1457CrossRefGoogle Scholar
  134. Zanoni G, Navone R, Lunardi C et al (2006) In celiac disease, a subset of autoantibodies against transglutaminase binds toll-like receptor 4 and induces activation of monocytes. PLoS Med 3:e358PubMedPubMedCentralCrossRefGoogle Scholar
  135. Zeniya A, Otaka M, Itoh H et al (1995) Induction and intracellular localization of a 72-kDa heat shock protein in rat gastric mucosa after water-immersion stress. J Gastroenterol 30:572–577PubMedCrossRefGoogle Scholar
  136. Zhang C, He X-J, Li L, Lu C, Lu A-P (2017) Effect of the natural product triptolide on pancreatic cancer: a systematic review of preclinical studies. Front Pharmacol 8:490–490PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ozden Yildirim Akan
    • 1
  • Pinar Ortan
    • 2
  • Ferda Hosgorler
    • 3
  1. 1.Division of İnternal MedicineSB University Izmir Bozyaka Training and Research HospitalIzmirTurkey
  2. 2.Division of NeurologySB University Izmir Bozyaka Training and Research HospitalIzmirTurkey
  3. 3.Division of PhysiologyDokuz Eylul University Medical FacultyİzmirTurkey

Personalised recommendations