Hsp60 Friend and Foe of the Nervous System

  • Antonella Marino Gammazza
  • Celeste Caruso Bavisotto
  • Francesca Rappa
  • Federica Scalia
  • Everly Conway de Macario
  • Alberto J. L. Macario
  • Francesco Cappello
Part of the Heat Shock Proteins book series (HESP, volume 20)


Hsp60 belongs to the subgroup of molecular chaperones named chaperonins and, typically, resides and functions in the mitochondria but it is also present in extramitochondrial sites. It chaperones client peptides as they fold to achieve the native conformation and also displays anti-stress roles by helping stress-damaged proteins regain a functional shape. Thus, Hsp60 is central to the integrity and functionality of mitochondria and energy production. All cells in the nervous system depend on Hsp60 so when the chaperonin malfunctions the consequences on nervous tissues are usually devastating, causing diverse diseases. These are the Hsp60 chaperonopathies, which can be genetic or acquired with the former caused by gene variants and the latter by various post-transcriptional mechanisms. All forms of chaperonopathies, i.e., by defect, by excess, and by mistake, associated with Hsp60 have been described, and some illustrative examples are discussed here. It is clear that this chaperonin is key to neuromuscular physiology but, when qualitatively and/or quantitatively abnormal causes diseases, often very serious.


Acquired chaperonopathies Alzheimer’s disease Central nervous system Chaperonins Chaperonopathies Genetic chaperonopathies Hsp60 Leucodystrophies Molecular chaperones Multiple sclerosis Myasthenia gravis Neuropathies Peripheral nervous system Spastic paraplegia 




Acetylcholine receptor


Alzheimer’s disease


Amyloid precursor protein


Blood-brain barrier


Chaperonin containing TCP-1


Central nervous system


Copy number variant


Chaperoning system


Cerebrospinal fluid


Cyclophilin D


Glioblastoma multiforme


Huntingtin-interacting protein 1


Heat shock protein;


Hereditary spastic paraplegia


Immune system


3,4-dihydroxy- L-phenylalanine


Methyl CpG binding protein 2


Myasthenia gravis


Multiple sclerosis


The mitochondrial unfolded protein response


Peripheral blood mononuclear cells


Reactive oxygen species


Single-nucleotide polymorphism


Spastic paraplegia


Temporal lobe epilepsy


TCP-1 ring complex


World Health Organization



A.J.L.M, and E.C. de M. were partially supported by IMET. This work was done under the agreement between IEMEST (Italy) and IMET (USA) (this is IMET contribution number IMET 19-007).


  1. Andreone BJ, Chow BW, Tata A et al (2017) Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of Caveolae-mediated transcytosis. Neuron 94:581–594.e5PubMedPubMedCentralCrossRefGoogle Scholar
  2. Arellano JI, Muñoz A, Ballesteros-Yáñez I et al (2004) Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus. Brain 127:45–64PubMedCrossRefGoogle Scholar
  3. Bajramović JJ, Lassmann H, Andvan Noort JM (1997) Expression of alphaB-crystallin in glia cells during lesional development in multiple sclerosis. J Neuroimmunol 78:143–151PubMedCrossRefGoogle Scholar
  4. Ballard C, Gauthier S, Corbett A et al (2011) Alzheimer’s disease. Lancet (London, England) 377:1019–1031CrossRefGoogle Scholar
  5. Beck JS, Mufson EJ, Counts SE (2016) Evidence for mitochondrial UPR gene activation in familial and sporadic Alzheimer’s disease. Curr Alzheimer Res 13:610–614PubMedPubMedCentralCrossRefGoogle Scholar
  6. Berger E, Rath E, Yuan D et al (2016) Mitochondrial function controls intestinal epithelial stemness and proliferation. Nat Commun 7:13171PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bergey GK (2013) Neurostimulation in the treatment of epilepsy. Exp Neurol 244:87–95PubMedCrossRefGoogle Scholar
  8. Bidmon HJ, Görg B, Palomero-Gallagher N et al (2004) Heat shock protein-27 is upregulated in the temporal cortex of patients with epilepsy. Epilepsia 45:1549–1559PubMedCrossRefGoogle Scholar
  9. Birk OS, Gur SL, Elias D et al (1999) The 60-kDa heat shock protein modulates allograft rejection. Proc Natl Acad Sci USA 96:5159–5163PubMedCrossRefGoogle Scholar
  10. Boyd-Kimball D, Sultana R, Poon HF et al (2005) Proteomic identification of proteins specifically oxidized by intracerebral injection of amyloid beta-peptide (1-42) into rat brain: implications for Alzheimer’s disease. Neuroscience 132:313–324PubMedCrossRefGoogle Scholar
  11. Bross P, Fernandez-Guerra P (2016) Disease-associated mutations in the HSPD1 gene encoding the large subunit of the mitochondrial HSP60/HSP10 chaperonin complex. Front Mol Biosci 3:49PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bross P, Li Z, Hansen J et al (2007) Single-nucleotide variations in the genes encoding the mitochondrial Hsp60/Hsp10 chaperone system and their disease-causing potential. J Hum Genet 52:56–65PubMedCrossRefGoogle Scholar
  13. Bross P, Naundrup S, Hansen J et al (2008) The Hsp60-(p.V98I) mutation associated with hereditary spastic paraplegia SPG13 compromises chaperonin function both in Vitro and in Vivo. J Biol Chem 283:15694–15700PubMedPubMedCentralCrossRefGoogle Scholar
  14. Calabrese V, Sultana R, Scapagnini G et al (2006) Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer’s disease. Antioxid Redox Signal 8:1975–1986PubMedCrossRefGoogle Scholar
  15. Calabrese V, Mancuso C, Ravagna A et al (2007) In vivo induction of heat shock proteins in the substantia nigra following L-DOPA administration is associated with increased activity of mitochondrial complex I and nitrosative stress in rats: regulation by glutathione redox state. J Neurochem 101:709–717PubMedCrossRefGoogle Scholar
  16. Campanella C, Bucchieri F, Ardizzone NM et al (2008) Upon oxidative stress, the antiapoptotic Hsp60/procaspase-3 complex persists in mucoepidermoid carcinoma cells. Eur J Histochem 52:221–228PubMedCrossRefGoogle Scholar
  17. Campanella C, Caruso Bavisotto C, Marino Gammazza A et al (2014) Exosomal Heat Shock Proteins as New Players in Tumour Cell-to-cell Communication. J Circ Biomarkers 3:1–10CrossRefGoogle Scholar
  18. Campanella C, Rappa F, Sciumè C et al (2015) Heat shock protein 60 levels in tissue and circulating exosomes in human large bowel cancer before and after ablative surgery. Cancer 121:3230–3239PubMedCrossRefGoogle Scholar
  19. Campanella C, D’Anneo A, Marino Gammazza A et al (2016) The histone deacetylase inhibitor SAHA induces HSP60 nitration and its extracellular release by exosomal vesicles in human lung-derived carcinoma cells. Oncotarget 7:28849–28867PubMedCrossRefGoogle Scholar
  20. Cappello F, Conway de Macario E, Marasà L et al (2008) Hsp60 expression, new locations, functions and perspectives for cancer diagnosis and therapy. Cancer Biol Ther 7:801–809PubMedCrossRefGoogle Scholar
  21. Cappello F, Conway de Macario E, Di Felice V et al (2009) Chlamydia trachomatis infection and anti-Hsp60 immunity: the two sides of the coin. PLoS Pathog 5:e1000552PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cappello F, Caramori G, Campanella C et al (2011) Convergent sets of data from in vivo and in vitro methods point to an active role of Hsp60 in chronic obstructive pulmonary disease pathogenesis. PLoS One 6:e28200PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cappello F, Marino Gammazza A, Palumbo Piccionello A et al (2014) Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Expert Opin Ther Targets 18:185–208PubMedCrossRefGoogle Scholar
  24. Caruso Bavisotto C, Marino Gammazza A, Rappa F et al (2013) Exosomes: can doctors still ignore their existence? EuroMediterranean Biomed J 8:136–139Google Scholar
  25. Caruso Bavisotto C, Cappello F, Macario AJL et al (2017a) Exosomal HSP60: a potentially useful biomarker for diagnosis, assessing prognosis, and monitoring response to treatment. Expert Rev Mol Diagn 17:815–822PubMedCrossRefGoogle Scholar
  26. Caruso Bavisotto C, Nikolic D, Marino Gammazza A et al (2017b) The dissociation of the Hsp60/pro-Caspase-3 complex by bis(pyridyl)oxadiazole copper complex (CubipyOXA) leads to cell death in NCI-H292 cancer cells. J Inorg Biochem 170:8–16PubMedCrossRefGoogle Scholar
  27. Caruso Bavisotto C, Graziano F, Rappa F et al (2018) Exosomal chaperones and miRNAs in gliomagenesis: state-of-art and theranostics perspectives. Int J Mol Sci 19:2626PubMedCentralCrossRefGoogle Scholar
  28. Chang CC, Lui CC, Lee C-C et al (2012) Clinical significance of serological biomarkers and neuropsychological performances in patients with temporal lobe epilepsy. BMC Neurol 12:15PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cheng W, Li Y, Hou X et al (2014) HSP60 is involved in the neuroprotective effects of naloxone. Mol Med Rep 10:2172–2176PubMedCrossRefGoogle Scholar
  30. Choi J, Malakowsky CA, Talent JM et al (2003) Anti-apoptotic proteins are oxidized by Abeta25-35 in Alzheimer’s fibroblasts. Biochim Biophys Acta 1637:135–141PubMedCrossRefGoogle Scholar
  31. Christensen JH, Nielsen MN, Hansen J et al (2010) Inactivation of the hereditary spastic paraplegia-associated Hspd1 gene encoding the Hsp60 chaperone results in early embryonic lethality in mice. Cell Stress Chaperones 15:851–863PubMedPubMedCentralCrossRefGoogle Scholar
  32. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103PubMedPubMedCentralCrossRefGoogle Scholar
  33. Czarnecka AM, Campanella C, Zummo G, Cappello F (2006) Mitochondrial chaperones in cancer: from molecular biology to clinical diagnostics. Cancer Biol Ther 5:714–720PubMedCrossRefGoogle Scholar
  34. D’Souza SM, Brown IR (1998) Constitutive expression of heat shock proteins Hsp90, Hsc70, Hsp70 and Hsp60 in neural and non-neural tissues of the rat during postnatal development. Cell Stress Chaperones 3:188–199PubMedPubMedCentralCrossRefGoogle Scholar
  35. Eadie MJ (2012) Shortcomings in the current treatment of epilepsy. Expert Rev Neurother 12:1419–1427PubMedCrossRefGoogle Scholar
  36. Efthymiou G, Dardiotis E, Liaskos C et al (2016) Anti-hsp60 antibody responses based on helicobacter pylori in patients with multiple sclerosis: (ir)relevance to disease pathogenesis. J Neuroimmunol 298:19–23PubMedCrossRefGoogle Scholar
  37. Fabriek BO, Van Haastert ES, Galea I et al (2005) CD163-positive perivascular macrophages in the human CNS express molecules for antigen recognition and presentation. Glia 51:297–305PubMedCrossRefGoogle Scholar
  38. Fink JK (2006) Hereditary spastic paraplegia. Curr Neurol Neurosci Rep 6:65–76PubMedCrossRefGoogle Scholar
  39. Fontaine B, Davoine CS, Dürr A et al (2000) A new locus for autosomal dominant pure spastic paraplegia, on chromosome 2q24-q34. Am J Hum Genet 66:702–707PubMedPubMedCentralCrossRefGoogle Scholar
  40. Füst G, Uray K, Bene L et al (2012) Comparison of epitope specificity of anti-heat shock protein 60/65 IgG type antibodies in the sera of healthy subjects, patients with coronary heart disease and inflammatory bowel disease. Cell Stress Chaperones 17:215–227PubMedCrossRefGoogle Scholar
  41. Ghosh JC, Dohi T, Kang BH, Altieri DC (2008) Hsp60 regulation of tumor cell apoptosis. J Biol Chem 283:5188–5194PubMedCrossRefGoogle Scholar
  42. Ghosh JC, Siegelin MD, Dohi T, Altieri DC (2010) Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Res 70:8988–8993PubMedPubMedCentralCrossRefGoogle Scholar
  43. Giovannoni G (2006) Multiple sclerosis cerebrospinal fluid biomarkers. Dis Markers 22:187–196PubMedPubMedCentralCrossRefGoogle Scholar
  44. Goedert M, Spillantini MG, Jakes R et al (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526PubMedCrossRefGoogle Scholar
  45. Goldberg EM, Coulter DA (2013) Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nat Rev Neurosci 14:337–349PubMedPubMedCentralCrossRefGoogle Scholar
  46. Graziano F, Caruso Bavisotto C, Marino Gammazza A et al (2018) Chaperonology: the third eye on brain gliomas. Brain Sci 8:6CrossRefGoogle Scholar
  47. Gupta RS (1995) Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol 15:1–11PubMedCrossRefGoogle Scholar
  48. Hansen JJ, Dürr A, Cournu-Rebeix I et al (2002) Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 70:1328–1332PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hansen J, Bross P, Westergaard M et al (2003) Genomic structure of the human mitochondrial chaperonin genes: HSP60 and HSP10 are localised head to head on chromosome 2 separated by a bidirectional promoter. Hum Genet 112:71–77PubMedCrossRefGoogle Scholar
  50. Hansen J, Svenstrup K, Ang D et al (2007) A novel mutation in the HSPD1 gene in a patient with hereditary spastic paraplegia. J Neurol 254:897–900PubMedCrossRefGoogle Scholar
  51. Hemmingsen SM, Woolford C, van der Vies SM et al (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330–334PubMedCrossRefGoogle Scholar
  52. Henderson B, Pockley AG (2010) Molecular chaperones and protein-folding catalysts as intercellular signaling regulators in immunity and inflammation. J Leukoc Biol 88:445–462PubMedCrossRefGoogle Scholar
  53. Henderson B, Fares MA, Lund PA (2013) Chaperonin 60: a paradoxical, evolutionarily conserved protein family with multiple moonlighting functions. Biol Rev Camb Philos Soc 88:955–987PubMedCrossRefGoogle Scholar
  54. Hewamadduma CAA, Kirby J, Kershaw C et al (2008) HSP60 is a rare cause of hereditary spastic paraparesis, but may act as a genetic modifier. Neurology 70:1717–1718PubMedCrossRefGoogle Scholar
  55. Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115–145PubMedCrossRefGoogle Scholar
  56. Iwatsubo T, Odaka A, Suzuki N et al (1994) Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron 13:45–53PubMedCrossRefGoogle Scholar
  57. Janelidze S, Mattsson N, Stomrud E et al (2018) CSF biomarkers of neuroinflammation and cerebrovascular dysfunction in early Alzheimer disease. Neurology 91:e867–e877PubMedPubMedCentralCrossRefGoogle Scholar
  58. Jiang YQ, Wang XL, Cao XH et al (2013) Increased heat shock transcription factor 1 in the cerebellum reverses the deficiency of Purkinje cells in Alzheimer’s disease. Brain Res 1519:105–111PubMedCrossRefGoogle Scholar
  59. Kandratavicius L, Hallak JE, Carlotti CG et al (2014) Hippocampal expression of heat shock proteins in mesial temporal lobe epilepsy with psychiatric comorbidities and their relation to seizure outcome. Epilepsia 55:1834–1843PubMedCrossRefGoogle Scholar
  60. Kharlamov EA, Lepsveridze E, Meparishvili M et al (2011) Alterations of GABA(a) and glutamate receptor subunits and heat shock protein in rat hippocampus following traumatic brain injury and in posttraumatic epilepsy. Epilepsy Res 95:20–34PubMedCrossRefGoogle Scholar
  61. Kim YJ, Kim JY, Ko AR, Kang TC (2013) Reduction in heat shock protein 90 correlates to neuronal vulnerability in the rat piriform cortex following status epilepticus. Neuroscience 255:265–277PubMedCrossRefGoogle Scholar
  62. Koldewey P, Horowitz S, Bardwell JCA (2017) Chaperone-client interactions: non-specificity engenders multifunctionality. J Biol Chem 292:12010–12017PubMedPubMedCentralCrossRefGoogle Scholar
  63. Koren J, Jinwal UK, Lee DC et al (2009) Chaperone signalling complexes in Alzheimer’s disease. J Cell Mol Med 13:619–630PubMedCrossRefGoogle Scholar
  64. Kusk MS, Damgaard B, Risom L et al (2016) Hypomyelinating Leukodystrophy due to HSPD1 mutations: a new patient. Neuropediatrics 47:332–335PubMedCrossRefGoogle Scholar
  65. Li M, Li Z, Yao Y et al (2017) Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A 114:E396–E405PubMedCrossRefGoogle Scholar
  66. Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191PubMedCrossRefGoogle Scholar
  67. Liu XY, Yang JL, Chen LJ et al (2008) Comparative proteomics and correlated signaling network of rat hippocampus in the pilocarpine model of temporal lobe epilepsy. Proteomics 8:582–603PubMedCrossRefGoogle Scholar
  68. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820PubMedPubMedCentralCrossRefGoogle Scholar
  69. Macario AJL, Conway de Macario E (1997) Stress genes: an introductory overview. Stress 1:123–134PubMedCrossRefGoogle Scholar
  70. Macario AJL, Conway de Macario E (2002) Sick chaperones and ageing: a perspective. Ageing Res Rev 1:295–311PubMedCrossRefGoogle Scholar
  71. Macario AJL, Conway de Macario E (2005) Sick chaperones, cellular stress, and disease. N Engl J Med 353:1489–1501PubMedCrossRefGoogle Scholar
  72. Macario AJL, Conway de Macario E (2007) Chaperonopathies and chaperonotherapy. FEBS Lett 581:3681–3688PubMedCrossRefGoogle Scholar
  73. Macario AJL, Conway de Macario E, Cappello F (2013) The chaperonopathies : diseases with defective molecular chaperones. Springer, Dordrecht/Heidelberg/New York/LondonCrossRefGoogle Scholar
  74. Magen D, Georgopoulos C, Bross P et al (2008) Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am J Hum Genet 83:30–42PubMedPubMedCentralCrossRefGoogle Scholar
  75. Magnoni R, Palmfeldt J, Christensen JH et al (2013) Late onset motoneuron disorder caused by mitochondrial Hsp60 chaperone deficiency in mice. Neurobiol Dis 54:12–23PubMedCrossRefGoogle Scholar
  76. Mangione MR, Vilasi S, Marino C et al (2016) Hsp60, amateur chaperone in amyloid-beta fibrillogenesis. Biochim Biophys Acta 1860:2474–2483PubMedCrossRefGoogle Scholar
  77. Marino Gammazza A, Bucchieri F, Grimaldi LME et al (2012) The molecular anatomy of human Hsp60 and its similarity with that of bacterial orthologs and acetylcholine receptor reveal a potential pathogenetic role of anti-chaperonin immunity in myasthenia gravis. Cell Mol Neurobiol 32:943–947CrossRefGoogle Scholar
  78. Marino Gammazza A, Rizzo M, Citarrella R et al (2014) Elevated blood Hsp60, its structural similarities and cross-reactivity with thyroid molecules, and its presence on the plasma membrane of oncocytes point to the chaperonin as an immunopathogenic factor in Hashimoto’s thyroiditis. Cell Stress Chaperones 19:343–353PubMedCrossRefGoogle Scholar
  79. Marino Gammazza A, Colangeli R, Orban G et al (2015) Hsp60 response in experimental and human temporal lobe epilepsy. Sci Rep 5:9434PubMedCrossRefGoogle Scholar
  80. Marino Gammazza A, Caruso Bavisotto C, Barone R et al (2016) Alzheimer’s disease and molecular chaperones: current knowledge and the future of chaperonotherapy. Curr Pharm Des 22:4040–4049PubMedCrossRefGoogle Scholar
  81. Marino Gammazza A, Caruso Bavisotto C, David S et al (2017) HSP60 is a ubiquitous player in the physiological and pathogenic interactions between the chaperoning and the immune systems. Curr Immunol Rev 13:44–55Google Scholar
  82. Martin K, Jackson CF, Levy RG, Cooper PN (2016) Ketogenic diet and other dietary treatments for epilepsy. Cochrane Database Syst Rev 2:CD001903PubMedGoogle Scholar
  83. Meriin AB, Sherman MY (2005) Role of molecular chaperones in neurodegenerative disorders. Int J Hyperth 21:403–419CrossRefGoogle Scholar
  84. Miyamoto Y, Eguchi T, Kawahara K et al (2015) Hypomyelinating leukodystrophy-associated missense mutation in HSPD1 blunts mitochondrial dynamics. Biochem Biophys Res Commun 462:275–281PubMedCrossRefGoogle Scholar
  85. Miyamoto Y, Megumi FT, Hasegawa N et al (2016) Data supporting mitochondrial morphological changes by SPG13-associated HSPD1 mutants. Data Brief 6:482–488PubMedPubMedCentralCrossRefGoogle Scholar
  86. Nemirovsky A, Fisher Y, Baron R et al (2011) Amyloid beta-HSP60 peptide conjugate vaccine treats a mouse model of Alzheimer’s disease. Vaccine 29:4043–4050PubMedCrossRefGoogle Scholar
  87. Newsom-Davis J (1990) Diseases of the myoneural junction. Res Publ Assoc Res Nerv Ment Dis 68:233–240PubMedGoogle Scholar
  88. Novo G, Cappello F, Rizzo M et al (2011) Hsp60 and heme oxygenase-1 (Hsp32) in acute myocardial infarction. Transl Res 157:285–292PubMedCrossRefGoogle Scholar
  89. Ousman SS, Frederick A, Lim EMF (2017) Chaperone proteins in the central nervous system and peripheral nervous system after nerve injury. Front Neurosci 11:79PubMedPubMedCentralCrossRefGoogle Scholar
  90. Parnas A, Nadler M, Nisemblat S et al (2009) The MitCHAP-60 disease is due to entropic destabilization of the human mitochondrial Hsp60 oligomer. J Biol Chem 284:28198–28203PubMedPubMedCentralCrossRefGoogle Scholar
  91. Pitkänen A, Sutula TP (2002) Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol 1:173–181PubMedCrossRefGoogle Scholar
  92. Pockley AG, Muthana M, Calderwood SK (2008) The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 33:71–79PubMedCrossRefGoogle Scholar
  93. Prabhakar S, Kurien E, Gupta RS et al (1994) Heat shock protein immunoreactivity in CSF: correlation with oligoclonal banding and demyelinating disease. Neurology 44:1644–1648PubMedCrossRefGoogle Scholar
  94. Quintana FJ, Cohen IR (2011) The HSP60 immune system network. Trends Immunol 32:89–95PubMedCrossRefGoogle Scholar
  95. Quintana FJ, Getz G, Hed G et al (2003) Cluster analysis of human autoantibody reactivities in health and in type 1 diabetes mellitus: a bio-informatic approach to immune complexity. J Autoimmun 21:65–75PubMedCrossRefGoogle Scholar
  96. Quintana FJ, Hagedorn PH, Elizur G et al (2004) Functional immunomics: microarray analysis of IgG autoantibody repertoires predicts the future response of mice to induced diabetes. Proc Natl Acad Sci 101:14615–14621PubMedCrossRefGoogle Scholar
  97. Quintana FJ, Farez MF, Izquierdo G et al (2012) Antigen microarrays identify CNS-produced autoantibodies in RRMS. Neurology 78:532–539PubMedPubMedCentralCrossRefGoogle Scholar
  98. Rahman M, Steuer J, Gillgren P et al (2017) Induction of dendritic cell–mediated activation of t cells from atherosclerotic plaques by human heat shock protein 60. J Am Heart Assoc 6:e006778PubMedPubMedCentralCrossRefGoogle Scholar
  99. Rajaiah R, Moudgil KD (2009) Heat-shock proteins can promote as well as regulate autoimmunity. Autoimmun Rev 8:388–393PubMedCrossRefGoogle Scholar
  100. Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12:623–635PubMedCrossRefGoogle Scholar
  101. Rappa F, Farina F, Zummo G et al (2012) HSP-molecular chaperones in cancer biogenesis and tumor therapy: an overview. Anticancer Res 32:5139–5150PubMedGoogle Scholar
  102. Rappa F, Unti E, Baiamonte P et al (2013) Different immunohistochemical levels of Hsp60 and Hsp70 in a subset of brain tumors and putative role of Hsp60 in neuroepithelial tumorigenesis. Eur J Histochem 57:e20PubMedPubMedCentralCrossRefGoogle Scholar
  103. Ravizza T, Gagliardi B, Noé F et al (2008) Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 29:142–160PubMedCrossRefGoogle Scholar
  104. Rowland SE, Robb FT (2017) Structure, function and evolution of the Hsp60 chaperonins. Prokaryotic chaperonins. Springer, Dordrecht/Heidelberg/New York/London, pp 3–20Google Scholar
  105. Rowley S, Patel M (2013) Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic Biol Med 62:121–131PubMedPubMedCentralCrossRefGoogle Scholar
  106. Ruiz-Vázquez E, de Castro P (2003) “2-6-11” motif in heat shock protein 60 and central nervous system antigens: a preliminary study in multiple sclerosis patients. J Physiol Biochem 59:1–9PubMedCrossRefGoogle Scholar
  107. Saikali P, Antel JP, Pittet CL et al (2010) Contribution of astrocyte-derived IL-15 to CD8 T cell effector functions in multiple sclerosis. J Immunol 185:5693–5703PubMedCrossRefGoogle Scholar
  108. Sendrowski K, Sobaniec W (2013) Hippocampus, hippocampal sclerosis and epilepsy. Pharmacol Rep 65:555–565PubMedCrossRefGoogle Scholar
  109. Skjærven L, Cuellar J, Martinez A, Valpuesta JM (2015) Dynamics, flexibility, and allostery in molecular chaperonins. FEBS Lett 589:2522–2532PubMedCrossRefGoogle Scholar
  110. Stringer JL, Agarwal KS, Dure LS (1997) Is cell death necessary for hippocampal mossy fiber sprouting? Epilepsy Res 27:67–76PubMedCrossRefGoogle Scholar
  111. Swerdlow RH, Burns JM, Khan SM (2010) The Alzheimer’s disease mitochondrial Cascade hypothesis. J Alzheimers Dis 20:S265–S279PubMedCrossRefGoogle Scholar
  112. Tang H, Li J, Liu X et al (2016) Down-regulation of HSP60 suppresses the proliferation of glioblastoma cells via the ROS/AMPK/mTOR pathway. Sci Rep 6:28388PubMedPubMedCentralCrossRefGoogle Scholar
  113. Telling GC, Scott M, Mastrianni J et al (1995) Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell 83:79–90PubMedCrossRefGoogle Scholar
  114. Tomasello G, Rodolico V, Zerilli M et al (2011) Changes in immunohistochemical levels and subcellular localization after therapy and correlation and colocalization with CD68 suggest a pathogenetic role of Hsp60 in ulcerative colitis. Appl Immunohistochem Mol Morphol 19:552–561PubMedCrossRefGoogle Scholar
  115. Traugott U, Reinherz EL, Raine CS (1983) Multiple sclerosis: distribution of T cell subsets within active chronic lesions. Science 219:308–310PubMedCrossRefGoogle Scholar
  116. van Eden W, van der Zee R, Prakken B (2005) Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 5:318–330PubMedCrossRefGoogle Scholar
  117. Van Liefferinge J, Massie A, Portelli J et al (2013) Are vesicular neurotransmitter transporters potential treatment targets for temporal lobe epilepsy? Front Cell Neurosci 7:139PubMedPubMedCentralGoogle Scholar
  118. Veereshwarayya V, Kumar P, Rosen KM et al (2006) Differential effects of mitochondrial heat shock protein 60 and related molecular chaperones to prevent intracellular beta-amyloid-induced inhibition of complex IV and limit apoptosis. J Biol Chem 281:29468–29478PubMedCrossRefGoogle Scholar
  119. Verrijn Stuart AA, Jager W, Klein MR et al (2012) Recognition of heat shock protein 60 epitopes in children with type 1 diabetes. Diabetes Metab Res Rev 28:527–534PubMedCrossRefGoogle Scholar
  120. Vilasi S, Bulone D, Caruso Bavisotto C et al (2018) Chaperonin of group I: oligomeric spectrum and biochemical and biological implications. Front Mol Biosci 4:99PubMedPubMedCentralCrossRefGoogle Scholar
  121. Waldbaum S, Patel M (2010) Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy? J Bioenerg Biomembr 42:449–455PubMedPubMedCentralCrossRefGoogle Scholar
  122. Walls KC, Coskun P, Gallegos-Perez JL et al (2012) Swedish Alzheimer mutation induces mitochondrial dysfunction mediated by HSP60 mislocalization of amyloid precursor protein (APP) and beta-amyloid. J Biol Chem 287:30317–30327PubMedPubMedCentralCrossRefGoogle Scholar
  123. Wu YT, Wu SB, Lee WY, Wei YH (2010) Mitochondrial respiratory dysfunction-elicited oxidative stress and posttranslational protein modification in mitochondrial diseases. Ann N Y Acad Sci 1201:147–156PubMedCrossRefGoogle Scholar
  124. Wucherpfennig KW, Newcombe J, Li H et al (1992) Gamma delta T-cell receptor repertoire in acute multiple sclerosis lesions. Proc Natl Acad Sci U S A 89:4588–4592PubMedPubMedCentralCrossRefGoogle Scholar
  125. Yamamoto T, Yamamoto-Shimojima K, Ueda Y et al (2018) Independent occurrence of de novo HSPD1 and HIP1 variants in brothers with different neurological disorders - leukodystrophy and autism. Hum Genome Var 5:18PubMedPubMedCentralCrossRefGoogle Scholar
  126. Yang T, Hsu C, Liao W, Chuang JS (2008) Heat shock protein 70 expression in epilepsy suggests stress rather than protection. Acta Neuropathol 115:219–230PubMedCrossRefGoogle Scholar
  127. Yoo BC, Kim SH, Cairns N et al (2001) Deranged expression of molecular chaperones in brains of patients with Alzheimer’s disease. Biochem Biophys Res Commun 280:249–258PubMedCrossRefGoogle Scholar
  128. Zhang D, Sun L, Zhu H et al (2012) Microglial LOX-1 reacts with extracellular HSP60 to bridge neuroinflammation and neurotoxicity. Neurochem Int 61:1021–1035PubMedCrossRefGoogle Scholar
  129. Zhang R, Li Y, Hou X et al (2017) Neuroprotective effect of heat shock protein 60 on matrine-suppressed microglial activation. Exp Ther Med 14:1832–1836PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Antonella Marino Gammazza
    • 1
  • Celeste Caruso Bavisotto
    • 1
    • 2
    • 3
  • Francesca Rappa
    • 1
  • Federica Scalia
    • 1
  • Everly Conway de Macario
    • 2
    • 4
  • Alberto J. L. Macario
    • 2
    • 4
  • Francesco Cappello
    • 1
  1. 1.Department of Biomedicine, Neurosciences, and Advanced DiagnosticsUniversity of PalermoPalermoItaly
  2. 2.Euro-Mediterranean Institute of Science and Technology (IEMEST)PalermoItaly
  3. 3.Institute of Biophysics (IBF-CNR)National Research CouncilPalermoItaly
  4. 4.Department of Microbiology and ImmunologyUniversity of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET)BaltimoreUSA

Personalised recommendations