Advertisement

Combining Resolution-Path Dependencies with Dependency Learning

  • Tomáš PeitlEmail author
  • Friedrich Slivovsky
  • Stefan Szeider
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11628)

Abstract

We present the first practical implementation of the reflexive resolution-path dependency scheme in a QBF solver. Unlike in DepQBF, which uses the less general standard dependency scheme, we do not compute the dependency relation upfront, but instead query relevant dependencies on demand during dependency conflicts, when the solver is about to learn a missing dependency. Thus, our approach is fundamentally tied to dependency learning, and shows that the two techniques for dependency analysis can be fruitfully combined. As a byproduct, we propose a quasilinear-time algorithm to compute all resolution-path dependencies of a given variable. Experimental results on the QBF library confirm the viability of our technique and identify families of formulas where the speedup is particularly promising.

References

  1. 1.
    Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Formal Methods Syst. Des. 41(1), 45–65 (2012)CrossRefGoogle Scholar
  2. 2.
    Lonsing, F., Biere, A.: Integrating Dependency schemes in search-based QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–171. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14186-7_14CrossRefGoogle Scholar
  3. 3.
    Lonsing, F., Biere, A.: A compact representation for syntactic dependencies in QBFs. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 398–411. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02777-2_37CrossRefGoogle Scholar
  4. 4.
    Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: proof generation and strategy extraction in search-based QBF solving. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 291–308. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45221-5_21CrossRefzbMATHGoogle Scholar
  5. 5.
    Giunchiglia, E., Narizzano, M., Pulina, L., Tacchella, A.: Quantified Boolean Formulas satisfiability library (QBFLIB) (2005). www.qbflib.org
  6. 6.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified Boolean formulas. J. Artif. Intell. Res. 26, 371–416 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31612-8_10CrossRefGoogle Scholar
  8. 8.
    Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, pp. 325–331. AAAI Press (2015)Google Scholar
  9. 9.
    Kaibel, V., Peinhardt, M.: On the bottleneck shortest path problem. Zib-report 06–22, Zuse Institute Berlin (2006)Google Scholar
  10. 10.
    Büning, H.K., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Information and Computation 17(1), 12–18 (1995)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. J. Artif. Intell. Res., 65 (2019)CrossRefGoogle Scholar
  12. 12.
    Peitl, T., Slivovsky, F., Szeider, S.: Long-distance Q-resolution with dependency schemes. J. Autom. Reason. 63(1), 127–155 (2019)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Rabe, M.N., Tentrup, L.: CAQE: A certifying QBF solver. In: Kaivola, R., Wahl, T. (eds.) Formal Methods in Computer-Aided Design - FMCAD 2015, pp. 136–143. IEEE Computer Society (2015)Google Scholar
  14. 14.
    Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom. Reason. 42(1), 77–97 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Slivovsky, F., Szeider, S.: Quantifier reordering for QBF. J. Autom. Reason. 56(4), 459–477 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes. Theor. Comput. Sci. 612, 83–101 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gelder, A.: Variable Independence and resolution paths for quantified Boolean formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23786-7_59CrossRefGoogle Scholar
  18. 18.
    Wimmer, R., Reimer, S., Marin, P., Becker, B.: HQSpre – an effective preprocessor for QBF and DQBF. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 373–390. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54577-5_21CrossRefGoogle Scholar
  19. 19.
    Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: Pileggi, L.T., Kuehlmann, A. (eds.) Proceedings of the 2002 IEEE/ACM International Conference on Computer-aided Design, ICCAD 2002, San Jose, California, USA, 10–14 November 2002, pp. 442–449. ACM/IEEE Computer Society (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tomáš Peitl
    • 1
    Email author
  • Friedrich Slivovsky
    • 1
  • Stefan Szeider
    • 1
  1. 1.Algorithms and Complexity GroupTU WienViennaAustria

Personalised recommendations