Advertisement

QRATPre+: Effective QBF Preprocessing via Strong Redundancy Properties

  • Florian LonsingEmail author
  • Uwe Egly
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11628)

Abstract

We present version 2.0 of QRATPre+, a preprocessor for quantified Boolean formulas (QBFs) based on the \(\mathsf {QRAT} \) proof system and its generalization \(\mathsf {QRAT}^{+} \). These systems rely on strong redundancy properties of clauses and universal literals. QRATPre+ is the first implementation of these redundancy properties in \(\mathsf {QRAT} \) and \(\mathsf {QRAT}^{+} \) used to simplify QBFs in preprocessing. It is written in C and features an API for easy integration in other QBF tools. We present implementation details and report on experimental results demonstrating that QRATPre+ improves upon the power of state-of-the-art preprocessors and solvers.

References

  1. 1.
    Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 101–115. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22438-6_10CrossRefGoogle Scholar
  2. 2.
    Bloem, R., Braud-Santoni, N., Hadzic, V., Egly, U., Lonsing, F., Seidl, M.: Expansion-based QBF solving without recursion. In: FMCAD, pp. 1–10. IEEE (2018)Google Scholar
  3. 3.
    Cadoli, M., Giovanardi, A., Schaerf, M.: An algorithm to evaluate quantified boolean formulae. In: AAAI, pp. 262–267. AAAI Press/The MIT Press (1998)Google Scholar
  4. 4.
    Gent, I., Giunchiglia, E., Narizzano, M., Rowley, A., Tacchella, A.: Watched data structures for QBF solvers. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 25–36. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24605-3_3CrossRefGoogle Scholar
  5. 5.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified boolean formulas. JAIR 26, 371–416 (2006).  https://doi.org/10.1613/jair.1959MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for SAT and QSAT. JAIR 53, 127–168 (2015).  https://doi.org/10.1613/jair.4694MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Heule, M., Seidl, M., Biere, A.: A unified proof system for QBF preprocessing. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 91–106. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08587-6_7CrossRefGoogle Scholar
  8. 8.
    Heule, M.J.H., Seidl, M., Biere, A.: Blocked literals are universal. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 436–442. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-17524-9_33CrossRefGoogle Scholar
  9. 9.
    Heule, M., Seidl, M., Biere, A.: Solution validation and extraction for QBF preprocessing. J. Autom. Reasoning 58(1), 97–125 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. Artif. Intell. 234, 1–25 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31365-3_28CrossRefGoogle Scholar
  12. 12.
    Kiesl, B., Seidl, M., Tompits, H., Biere, A.: Super-blocked clauses. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 45–61. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40229-1_5CrossRefGoogle Scholar
  13. 13.
    Kiesl, B., Seidl, M., Tompits, H., Biere, A.: Blockedness in propositional logic: are you satisfied with your neighborhood? In: IJCAI, pp. 4884–4888 (2017). www.ijcai.org
  14. 14.
    Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified boolean formulas. Inf. Comput. 117(1), 12–18 (1995).  https://doi.org/10.1006/inco.1995.1025MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Letz, R.: Lemma and model caching in decision procedures for quantified boolean formulas. In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 160–175. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45616-3_12CrossRefzbMATHGoogle Scholar
  16. 16.
    Lonsing, F., Egly, U.: DepQBF 6.0: a search-based QBF solver beyond traditional QCDCL. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 371–384. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63046-5_23CrossRefGoogle Scholar
  17. 17.
    Lonsing, F., Egly, U.: Evaluating QBF solvers: quantifier alternations matter. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 276–294. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98334-9_19CrossRefGoogle Scholar
  18. 18.
    Lonsing, F., Egly, U.: \({\sf QRAT}^+\): generalizing QRAT by a more powerful QBF redundancy property. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 161–177. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94205-6_12CrossRefGoogle Scholar
  19. 19.
    Lonsing, F., Egly, U.: QRATPre+: effective QBF preprocessing via strong redundancy properties. CoRR abs/1904.12927 (2019). https://arxiv.org/abs/1904.12927. SAT 2019 proceedings version with appendix
  20. 20.
    Lonsing, F., Seidl, M., Van Gelder, A.: The QBF gallery: behind the scenes. Artif. Intell. 237, 92–114 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Marin, P., Narizzano, M., Pulina, L., Tacchella, A., Giunchiglia, E.: Twelve years of QBF evaluations: QSAT Is PSPACE-hard and it shows. Fundam. Inform. 149(1–2), 133–158 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 298–313. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66263-3_19CrossRefGoogle Scholar
  23. 23.
    Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: FMCAD, pp. 136–143. IEEE (2015)Google Scholar
  24. 24.
    Tentrup, L.: On expansion and resolution in CEGAR based QBF solving. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 475–494. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63390-9_25CrossRefGoogle Scholar
  25. 25.
    Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 422–429. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09284-3_31CrossRefzbMATHGoogle Scholar
  26. 26.
    Wimmer, R., Reimer, S., Marin, P., Becker, B.: HQSpre – an effective preprocessor for QBF and DQBF. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 373–390. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54577-5_21CrossRefGoogle Scholar
  27. 27.
    Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability solver. In: ICCAD, pp. 442–449. ACM/IEEE Computer Society (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Computer Science DepartmentStanford UniversityStanfordUSA
  2. 2.Institute of Logic and ComputationTU WienViennaAustria

Personalised recommendations