Virtual Reality Training as an Intervention to Reduce Falls

  • Anat MirelmanEmail author
  • Inbal Maidan
  • Shirley Shema Shiratzky
  • Jeffrey M. Hausdorff


Falls result from interactions between multiple individual and environmental risk factors. Research over the last decades has clearly demonstrated the strong connection between balance, gait and falls, on the one hand, and cognitive function, on the other hand. Due to the multifaceted aspects of falls, therapeutic interventions aimed at reducing fall risk should be designed to address both motor and cognitive aspects of safe gait. Virtual reality enables individualized repetitive practice of motor function, graded in accordance to the needs and the ability of the person, while engaging in and stimulating cognitive processes. This chapter summarizes the rationale behind using virtual reality technology for fall prevention and the available evidence to support novel interventions.


Falls Virtual reality Interventions Older adults Exercise Motor-cognitive function 


  1. 1.
    Vieira ER, Palmer RC, Chaves PH. Prevention of falls in older people living in the community. BMJ. 2016;353:i1419.CrossRefGoogle Scholar
  2. 2.
    Hausdorff JM, Rios DA, Edelberg HK. Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch Phys Med Rehabil. 2001;82(8):1050–6.CrossRefGoogle Scholar
  3. 3.
    Robinovitch SN, Feldman F, Yang Y, Schonnop R, Leung PM, Sarraf T, et al. Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study. Lancet. 2013;381(9860):47–54.CrossRefGoogle Scholar
  4. 4.
    Sartini M, Cristina ML, Spagnolo AM, Cremonesi P, Costaguta C, Monacelli F, et al. The epidemiology of domestic injurious falls in a community dwelling elderly population: an outgrowing economic burden. Eur J Pub Health. 2010;20(5):604–6.CrossRefGoogle Scholar
  5. 5.
    Legters K. Fear of falling. Phys Ther. 2002;82(3):264–72.PubMedGoogle Scholar
  6. 6.
    Sherrington C, Tiedemann A, Fairhall N, Close JC, Lord SR. Exercise to prevent falls in older adults: an updated meta-analysis and best practice recommendations. N S W Public Health Bull. 2011;22(3–4):78–83.CrossRefGoogle Scholar
  7. 7.
    Sherrington C, Michaleff ZA, Fairhall N, Paul SS, Tiedemann A, Whitney J, et al. Exercise to prevent falls in older adults: an updated systematic review and meta-analysis. Br J Sports Med. 2017;51(24):1750–8.CrossRefGoogle Scholar
  8. 8.
    Winter H, Watt K, Peel NM. Falls prevention interventions for community-dwelling older persons with cognitive impairment: a systematic review. Int Psychogeriatr. 2013;25(2):215–27.CrossRefGoogle Scholar
  9. 9.
    Herman T, Mirelman A, Giladi N, Schweiger A, Hausdorff JM. Executive control deficits as a prodrome to falls in healthy older adults: a prospective study linking thinking, walking, and falling. J Gerontol A Biol Sci Med Sci. 2010;65(10):1086–92.CrossRefGoogle Scholar
  10. 10.
    Mirelman A, Herman T, Brozgol M, Dorfman M, Sprecher E, Schweiger A, et al. Executive function and falls in older adults: new findings from a five-year prospective study link fall risk to cognition. PLoS One. 2012;7(6):e40297.CrossRefGoogle Scholar
  11. 11.
    Montero-Odasso M, Verghese J, Beauchet O, Hausdorff JM. Gait and cognition: a complementary approach to understanding brain function and the risk of falling. J Am Geriatr Soc. 2012;60(11):2127–36.CrossRefGoogle Scholar
  12. 12.
    Montero-Odasso M, Hachinski V. Preludes to brain failure: executive dysfunction and gait disturbances. Neurol Sci. 2014;35(4):601–4.CrossRefGoogle Scholar
  13. 13.
    Montero-Odasso M, Speechley M. Falls in cognitively impaired older adults: implications for risk assessment and prevention. J Am Geriatr Soc. 2018;66(2):367–75.CrossRefGoogle Scholar
  14. 14.
    Muir SW, Gopaul K, Montero Odasso MM. The role of cognitive impairment in fall risk among older adults: a systematic review and meta-analysis. Age Ageing. 2012;41(3):299–308.CrossRefGoogle Scholar
  15. 15.
    Holtzer R, Ozelius L, Xue X, Wang T, Lipton RB, Verghese J. Differential effects of COMT on gait and executive control in aging. Neurobiol Aging. 2010;31(3):523–31.CrossRefGoogle Scholar
  16. 16.
    Liu-Ambrose T, Davis JC, Nagamatsu LS, Hsu CL, Katarynych LA, Khan KM. Changes in executive functions and self-efficacy are independently associated with improved usual gait speed in older women. BMC Geriatr. 2010;10:25.CrossRefGoogle Scholar
  17. 17.
    Amboni M, Barone P, Hausdorff JM. Cognitive contributions to gait and falls: evidence and implications. Mov Disord. 2013;28(11):1520–33.CrossRefGoogle Scholar
  18. 18.
    Hausdorff JM, Schweiger A, Herman T, Yogev-Seligmann G, Giladi N. Dual-task decrements in gait: contributing factors among healthy older adults. J Gerontol A Biol Sci Med Sci. 2008;63(12):1335–43.CrossRefGoogle Scholar
  19. 19.
    Alexander NB, Hausdorff JM. Guest editorial: linking thinking, walking, and falling. J Gerontol A Biol Sci Med Sci. 2008;63(12):1325–8.CrossRefGoogle Scholar
  20. 20.
    Montero-Odasso M, Wells J, Borrie M. Can cognitive enhancers reduce the risk of falls in people with dementia? An open-label study with controls. J Am Geriatr Soc. 2009;57(2):359–60.CrossRefGoogle Scholar
  21. 21.
    Galna B, Murphy AT, Morris ME. Obstacle crossing in people with Parkinson’s disease: foot clearance and spatiotemporal deficits. Hum Mov Sci. 2010;29(5):843–52.CrossRefGoogle Scholar
  22. 22.
    Maidan I, Eyal S, Kurz I, Geffen N, Gazit E, Ravid L, et al. Age-associated changes in obstacle negotiation strategies: does size and timing matter? Gait Posture. 2018;59:242–7.CrossRefGoogle Scholar
  23. 23.
    Eggenberger P, Theill N, Holenstein S, Schumacher V, de Bruin ED. Multicomponent physical exercise with simultaneous cognitive training to enhance dual-task walking of older adults: a secondary analysis of a 6-month randomized controlled trial with 1-year follow-up. Clin Interv Aging. 2015;10:1711–32.CrossRefGoogle Scholar
  24. 24.
    Mirelman A, Maidan I, Herman T, Deutsch JE, Giladi N, Hausdorff JM. Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson’s disease? J Gerontol A Biol Sci Med Sci. 2011;66(2):234–40.CrossRefGoogle Scholar
  25. 25.
    Rosso AL, Studenski SA, Chen WG, Aizenstein HJ, Alexander NB, Bennett DA, et al. Aging, the central nervous system, and mobility. J Gerontol A Biol Sci Med Sci. 2013;68(11):1379–86.CrossRefGoogle Scholar
  26. 26.
    de Bruin ED, Schoene D, Pichierri G, Smith ST. Use of virtual reality technique for the training of motor control in the elderly. Some theoretical considerations. Z Gerontol Geriatr. 2010 Aug;43(4):229–34.CrossRefGoogle Scholar
  27. 27.
    Canning CG, Sherrington C, Lord SR, Close JC, Heritier S, Heller GZ, et al. Exercise for falls prevention in Parkinson disease: a randomized controlled trial. Neurology. 2015;84(3):304–12.CrossRefGoogle Scholar
  28. 28.
    Varma VR, Hausdorff JM, Studenski SA, Rosano C, Camicioli R, Alexander NB, et al. Aging, the central nervous system, and mobility in older adults: interventions. J Gerontol A Biol Sci Med Sci. 2016;71(11):1451–8.CrossRefGoogle Scholar
  29. 29.
    Mirelman A, Rochester L, Reelick M, Nieuwhof F, Pelosin E, Abbruzzese G, et al. V-TIME: a treadmill training program augmented by virtual reality to decrease fall risk in older adults: study design of a randomized controlled trial. BMC Neurol. 2013;13:15.CrossRefGoogle Scholar
  30. 30.
    Ehgoetz Martens KA, Ellard CG, Almeida QJ. Does anxiety cause freezing of gait in Parkinson’s disease? PLoS One. 2014;9(9):e106561.CrossRefGoogle Scholar
  31. 31.
    Levy F, Leboucher P, Rautureau G, Komano O, Millet B, Jouvent R. Fear of falling: efficacy of virtual reality associated with serious games in elderly people. Neuropsychiatr Dis Treat. 2016;12:877–81.CrossRefGoogle Scholar
  32. 32.
    McCann RA, Armstrong CM, Skopp NA, Edwards-Stewart A, Smolenski DJ, June JD, et al. Virtual reality exposure therapy for the treatment of anxiety disorders: an evaluation of research quality. J Anxiety Disord. 2014;28(6):625–31.CrossRefGoogle Scholar
  33. 33.
    Cherniack EP. Not just fun and games: applications of virtual reality in the identification and rehabilitation of cognitive disorders of the elderly. Disabil Rehabil Assist Technol. 2011;6(4):283–9.CrossRefGoogle Scholar
  34. 34.
    Mirelman A, Rochester L, Maidan I, Del DS, Alcock L, Nieuwhof F, et al. Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): a randomised controlled trial. Lancet. 2016;388(10050):1170–82.CrossRefGoogle Scholar
  35. 35.
    Saldana SJ, Marsh AP, Rejeski WJ, Haberl JK, Wu P, Rosenthal S, et al. Assessing balance through the use of a low-cost head-mounted display in older adults: a pilot study. Clin Interv Aging. 2017;12:1363–70.CrossRefGoogle Scholar
  36. 36.
    Dockx K, Alcock L, Bekkers E, Ginis P, Reelick M, Pelosin E, et al. Fall-prone older People’s attitudes towards the use of virtual reality technology for fall prevention. Gerontology. 2017;63(6):590–8.CrossRefGoogle Scholar
  37. 37.
    Neri SG, Cardoso JR, Cruz L, Lima RM, de Oliveira RJ, Iversen MD, et al. Do virtual reality games improve mobility skills and balance measurements in community-dwelling older adults? Systematic review and meta-analysis. Clin Rehabil. 2017;31(10):1292–304.CrossRefGoogle Scholar
  38. 38.
    Duque G, Boersma D, Loza-Diaz G, Hassan S, Suarez H, Geisinger D, et al. Effects of balance training using a virtual-reality system in older fallers. Clin Interv Aging. 2013;8:257–63.CrossRefGoogle Scholar
  39. 39.
    Fu AS, Gao KL, Tung AK, Tsang WW, Kwan MM. Effectiveness of exergaming training in reducing risk and incidence of falls in frail older adults with a history of falls. Arch Phys Med Rehabil. 2015;96(12):2096–102.CrossRefGoogle Scholar
  40. 40.
    Pedreira da FE, Ribeiro da Silva NM, Pinto EB. Therapeutic effect of virtual reality on post-stroke patients: randomized clinical trial. J Stroke Cerebrovasc Dis. 2017;26(1):94–100.CrossRefGoogle Scholar
  41. 41.
    Parijat P, Lockhart TE, Liu J. Effects of perturbation-based slip training using a virtual reality environment on slip-induced falls. Ann Biomed Eng. 2015;43(4):958–67.CrossRefGoogle Scholar
  42. 42.
    Dockx K, Bekkers EM, Van den Bergh V, Ginis P, Rochester L, Hausdorff JM, et al. Virtual reality for rehabilitation in Parkinson’s disease. Cochrane Database Syst Rev. 2016;12:CD010760.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Anat Mirelman
    • 1
    • 2
    • 3
    Email author
  • Inbal Maidan
    • 1
    • 2
    • 3
  • Shirley Shema Shiratzky
    • 2
  • Jeffrey M. Hausdorff
    • 2
    • 4
    • 5
  1. 1.Laboratory for Early Markers Of Neurodegeneration (LEMON)Neurological Institute, Tel Aviv Medical CenterTel AvivIsrael
  2. 2.Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Medical CenterTel AvivIsrael
  3. 3.Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
  4. 4.Department of Physical TherapySackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
  5. 5.Rush Alzheimer’s Disease Center and Department of Orthopaedic SurgeryRush University Medical CenterChicagoUSA

Personalised recommendations