Cardiac Excitation-Contraction Coupling

  • Fotios G. Pitoulis
  • Cesare M. TerraccianoEmail author
Part of the Learning Materials in Biosciences book series (LMB)


This chapter will provide you with an understanding of the regulation of Ca2+ in the myocardium, its physiological implication as well as its role in orchestrating myocardial contraction. The chapter explores the processes of excitation-contraction coupling (ECC) and calcium-induced calcium release (CICR) whilst appreciating the relevance of ECC in pathology and in engineering heart tissue.


  1. 1.
    Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205CrossRefPubMedGoogle Scholar
  2. 2.
    Eisner DA, Caldwell JL, Kistamás K, Trafford AW (2017) Calcium and excitation-contraction coupling in the heart. Circ Res 121:181–195CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ibrahim M, Al Masri A, Navaratnarajah M, Siedlecka U, Soppa GK, Moshkov A et al (2010) Prolonged mechanical unloading affects cardiomyocyte excitation-contraction coupling, transverse-tubule structure, and the cell surface. FASEB J 24(9):3321–3329CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kane C, Couch L, Terracciano CMN (2015) Excitation–contraction coupling of human induced pluripotent stem cell-derived cardiomyocytes. Front Cell Dev Biol 3:59CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bers DM. Excitation-contraction coupling and cardiac contractile force. Springer Science; 1991Google Scholar
  6. 6.
    Marks AR (2003) Calcium and the heart: a question of life and death. J Clin Investig 111:597–600CrossRefPubMedGoogle Scholar
  7. 7.
    Haack JA, Rosenberg RL (1994) Calcium-dependent inactivation of L-type calcium channels in planar lipid bilayers membrane preparation planar lipid bilayers. Biophys J 66(April):1051–1060CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang JF, Ellinor PT, Aldrich RW, Tsien RW (1994) Molecular determinants of voltage-dependent inactivation in calcium channels. Nature 372:97–100CrossRefPubMedGoogle Scholar
  9. 9.
    Barry WH, Bridge JH (1993) Intracellular calcium homeostasis in cardiac myocytes. Circulation 87(6):1806–1815CrossRefPubMedGoogle Scholar
  10. 10.
    Periasamy M, Kalyanasundaram A (2007) SERCA pump isoforms: their role in calcium transport and disease. Muscle Nerve 35:430CrossRefPubMedGoogle Scholar
  11. 11.
    MacLennan DH, Green NM (2000) Pumping ions. Nature 405:633–634CrossRefPubMedGoogle Scholar
  12. 12.
    Katz a M, Lorell BH (2000) Regulation of cardiac contraction and relaxation. Circulation 102(20 Suppl 4):IV69–IV74PubMedPubMedCentralGoogle Scholar
  13. 13.
    Gustavsson M, Verardi R, Mullen DG, Mote KR, Traaseth NJ, Gopinath T et al (2013) Allosteric regulation of SERCA by phosphorylation-mediated conformational shift of phospholamban. Proc Natl Acad Sci 110(43):17338–17343CrossRefPubMedGoogle Scholar
  14. 14.
    Frank KF, Bolck B, Erdmann E, Schwinger RHG (2003) Sarcoplasmic reticulum Ca2+ -ATPase modulates cardiac contraction and relaxation. Cardiovasc Res 57(April):20–27CrossRefPubMedGoogle Scholar
  15. 15.
    MacLennan DH, Asahi M (2003) Tupling a R. The regulation of SERCA-type pumps by phospholamban and sarcolipin. Ann N Y Acad Sci 986(1):472–480CrossRefPubMedGoogle Scholar
  16. 16.
    Asahi M, Kurzydlowski K, Tada M, MacLennan DH (2002) Sarcolipin inhibits polymerization of phospholamban to induce superinhibition of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs). J Biol Chem 277(30):26725–26728CrossRefPubMedGoogle Scholar
  17. 17.
    Periasamy M, Bhupathy P, Babu GJ (2008) Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovasc Res 77(2):265–273CrossRefPubMedGoogle Scholar
  18. 18.
    Gramolini AO, Trivieri MG, Oudit GY, Kislinger T, Li W, Patel MM et al (2006) Cardiac-specific overexpression of sarcolipin in phospholamban null mice impairs myocyte function that is restored by phosphorylation. Proc Natl Acad Sci U S A 103(7):2446–2451CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bassani RA, Bers DM (1994) Na-ca exchange is required for rest-decay but not for rest-potentiation of twitches in rabbit and rat ventricular myocytes. J Mol Cell Cardiol 26:1335–1347CrossRefPubMedGoogle Scholar
  20. 20.
    Bers DM (1991) Ca regulation in cardiac muscle. Med Sci Sport Exerc 23(10):1157–1162CrossRefGoogle Scholar
  21. 21.
    Bassani RA, Bassani JW, Bers DM (1992) Mitochondrial and sarcolemmal Ca2+ transport reduce [Ca2+]i during caffeine contractures in rabbit cardiac myocytes. J Physiol 453(1):591–608CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Choi HS, Eisner DA (1999) The role of sarcolemmal Ca2+-ATPase in the regulation of resting calcium concentration in rat ventricular myocytes. J Physiol 515(1):109–118CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427(6972):360–364CrossRefPubMedGoogle Scholar
  24. 24.
    Bassani RA, Bassani JWM, Bers DM (1995) Relaxation in ferret ventricular myocytes: role of the sarcolemmal Ca ATPase. Pflugers Arch Eur J Physiol 430(4):573–578CrossRefGoogle Scholar
  25. 25.
    Kwong JQ, Lu X, Correll RN, Schwanekamp JA, Vagnozzi RJ, Sargent MA et al (2015) The mitochondrial calcium uniporter selectively matches metabolic output to acute contractile stress in the heart. Cell Rep 12(1):15–22CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cheng H, Lederer W, Cannell M (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262(5134):740–744CrossRefPubMedGoogle Scholar
  27. 27.
    Lehnart SE, Wehrens XHT, Kushnir A, Marks AR (2004) Cardiac ryanodine receptor function and regulation in heart disease. Ann N Y Acad Sci 1015:144CrossRefPubMedGoogle Scholar
  28. 28.
    Cheng H, Lederer WJ (2008) Calcium Sparks. Physiol Rev 88(4):1491–1545CrossRefPubMedGoogle Scholar
  29. 29.
    Györke S, Terentyev D Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovasc Res 2008, 77(2):245–255CrossRefPubMedGoogle Scholar
  30. 30.
    Cannell MB, Soeller C (1998) Sparks of interest in cardiac excitation-contraction coupling. Trends Pharmacol Sci 19:16–20CrossRefPubMedGoogle Scholar
  31. 31.
    Stern MD (1992) Theory of excitation-contraction coupling in cardiac muscle. Biophys J 63(2):497–517CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cannell MB, Kong CHT (2012) Local control in cardiac E-C coupling. J Mol Cell Cardiol 52:298CrossRefPubMedGoogle Scholar
  33. 33.
    Stern MD, Song LS, Cheng H, Sham JS, Yang HT, Boheler KR et al (1999) Local control models of cardiac excitation-contraction coupling. A possible role for allosteric interactions between ryanodine receptors. J Gen Physiol 113(3):469–489CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hinch R, Greenstein JL, Tanskanen a J, Xu L, Winslow RL (2004) A simplified local control model of calcium-induced calcium release in cardiac ventricular myocytes. Biophys J 87(6):3723–3736CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Barcenas-Ruiz L, Wier WG (1987) Voltage dependence of intracellular [ca 2+]i transients in guinea pig ventricular myocytes. Circ Res 61:148–154CrossRefPubMedGoogle Scholar
  36. 36.
    Stern MD, Cheng H (2004) Putting out the fire: what terminates calcium-induced calcium release in cardiac muscle? Cell Calcium 35(6):591–601CrossRefPubMedGoogle Scholar
  37. 37.
    Wier WG, Balke CW (1999) Ca2+ release mechanisms, Ca2+ sparks, and local control of excitation-contraction coupling in normal heart muscle. Circ Res 85(9):770–776CrossRefPubMedGoogle Scholar
  38. 38.
    Santana LF, Cheng H, Gómez AM, Cannell MB, Lederer WJ, Scott JD et al (1996) Relation between the sarcolemmal Ca2+ current and Ca2+ sparks and local control theories for cardiac excitation-contraction coupling. Circ Res 78(1):166–171CrossRefPubMedGoogle Scholar
  39. 39.
    Hume LN (1990) Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 248(4953):372–376CrossRefPubMedGoogle Scholar
  40. 40.
    Goldhaber JI, Philipson KD (2013) Cardiac sodium-calcium exchange and efficient excitation-contraction coupling: implications for heart disease. Adv Exp Med Biol 961:355–364CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    López-López JR, Shacklock PS, Balke CW, Wier WG (1995) Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science 268(5213):1042–1045CrossRefPubMedGoogle Scholar
  42. 42.
    Bers DM, Lederer WJ, Berlin JR (1990) Intracellular Ca transients in rat cardiac myocytes: role of Na-Ca exchange in excitation-contraction coupling. Am J Physiol Physiol 258(5):C944–C954CrossRefGoogle Scholar
  43. 43.
    Sham JSK, Cleemann L, Morad M (1992) Gating of the cardiac Ca2+ release channel: the role of Na+ current and Na+ -Ca2+ exchange. Science 255:850–853CrossRefPubMedGoogle Scholar
  44. 44.
    Sobie EA, Duly KW, Cruz JDS, Lederer WJ, Jafri MS (2002) Termination of cardiac Ca2+ sparks: an investigative mathematical model of calcium-induced calcium release. Biophys J 83(1):59–78CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sham JS, Song LS, Chen Y, Deng LH, Stern MD, Lakatta EG et al (1998) Termination of Ca2+ release by a local inactivation of ryanodine receptors in cardiac myocytes. Proc Natl Acad Sci U S A 95(25):15096–15101CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Yang X, Pabon L, Murry CE (2014) Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res 114:511–523CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Mannhardt I, Breckwoldt K, Letuffe-Brenière D, Schaaf S, Schulz H, Neuber C et al (2016) Human engineered heart tissue: analysis of contractile force. Stem Cell Reports 7:29CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Malliaras K, Marbán E (2011) Cardiac cell therapy: where weve been, where we are, and where we should be headed. Br Med Bull 98(1):161–185CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37:2129–2200mCrossRefPubMedGoogle Scholar
  50. 50.
    Zima AV, Bovo E, Mazurek SR, Rochira JA, Li W, Terentyev D (2014) Ca handling during excitation-contraction coupling in heart failure. Pflugers Archiv Eur J Physiol 466:1129–1137CrossRefGoogle Scholar
  51. 51.
    Gomez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB et al (1997) Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276(5313):800–806CrossRefPubMedGoogle Scholar
  52. 52.
    Ibrahim M, Terracciano CM (2013) Reversibility of T-tubule remodelling in heart failure: mechanical load as a dynamic regulator of the T-tubules. Cardiovasc Res 98:225–232CrossRefPubMedGoogle Scholar
  53. 53.
    Lyon AR, MacLeod KT, Zhang Y, Garcia E, Kanda GK, Lab MJ et al (2009) Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proc Natl Acad Sci U S A 106(16):6854–6859CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Heart and Lung Institute, Myocardial Function, Imperial College LondonLondonUK

Personalised recommendations