Cellular and Molecular Mechanisms of Atherosclerosis

  • Adam Tsao
  • Mridul Rana
  • Joseph J. BoyleEmail author
Part of the Learning Materials in Biosciences book series (LMB)


This chapter will comprehensively discuss the underlying pathophysiology of atherosclerosis: a disease of global importance, focusing particularly on the role of immune and smooth muscle cells. We will then explore current research surrounding factors that may contribute to plaque instability and subsequent haemorrhage, including novel theories regarding the potential role of various macrophage subsets. Finally, we will examine atherosclerosis at a signalling level, expanding upon the role of inflammatory recruitment pathways and its constituent molecules.


  1. 1.
    Robinson JG, Williams KJ, Gidding S, Boršen J, Tabas I, Fisher EA et al (2018) Eradicating the burden of atherosclerotic cardiovascular disease by lowering apolipoprotein b lipoproteins earlier in life. J Am Heart Assoc 7:e009778CrossRefGoogle Scholar
  2. 2.
    Celermajer DS, Chow CK, Marijon E, Anstey NM, Woo KS (2012) Cardiovascular disease in the developing world: Prevalences, patterns, and the potential of early disease detection. J Am Coll Cardiol 60:1207CrossRefGoogle Scholar
  3. 3.
    Smith SC (2007) Multiple risk factors for cardiovascular disease and diabetes mellitus. Am J Med 120:S3CrossRefGoogle Scholar
  4. 4.
    Anderson TJ, Meredith IT, Yeung AC, Frei B, Selwyn AP, Ganz P (1995) The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vasomotion. N Engl J Med 332(8):488–493CrossRefGoogle Scholar
  5. 5.
    Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33:829Google Scholar
  6. 6.
    Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction. Circulation 115(10):1285–1295CrossRefGoogle Scholar
  7. 7.
    Peng HB, Libby P, Liao JK (1995) Induction and stabilization of IκBα by nitric oxide mediates inhibition of NF-κB. J Biol Chem 270(23):14214–14219CrossRefGoogle Scholar
  8. 8.
    Garg UC, Hassid A (1989) Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83(5):1774–1777CrossRefGoogle Scholar
  9. 9.
    Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM et al (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111(8):1201–1209CrossRefGoogle Scholar
  10. 10.
    Rubanyi GM, Vanhoutte PM (1986) Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Phys 250(5 (Part 2):H822–H827Google Scholar
  11. 11.
    Cominacini L, Garbin U, Pasini AF, Davoli A, Campagnola M, Pastorino AM et al (1998) Oxidized low-density lipoprotein increases the production of intracellular reactive oxygen species in endothelial cells: inhibitory effect of lacidipine. J Hypertens 16(12 II):1913–1919CrossRefGoogle Scholar
  12. 12.
    Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler Thromb Vasc Biol 5(3):293–302Google Scholar
  13. 13.
    Winkel LC, Hoogendoorn A, Xing R, Wentzel JJ, Van der Heiden K (2015) Animal models of surgically manipulated flow velocities to study shear stress-induced atherosclerosis. Atherosclerosis 241:100–110Google Scholar
  14. 14.
    Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S (1983) Carotid bifurcation atherosclerosis. Circ Res 53(4):502–515CrossRefGoogle Scholar
  15. 15.
    Brakemeier S, Kersten A, Eichler I, Grgic I, Zakrzewicz A, Hopp H et al (2003) Shear stress-induced up-regulation of the intermediate-conductance Ca2+−activated K+channel in human endothelium. Cardiovasc Res 60(3):488–496CrossRefGoogle Scholar
  16. 16.
    Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399(6736):601–605CrossRefGoogle Scholar
  17. 17.
    Lipowsky HH, Lescanic A (2013) The effect of doxycycline on shedding of the glycocalyx due to reactive oxygen species. Microvasc Res 90:80–85CrossRefGoogle Scholar
  18. 18.
    Kolářová H, Ambrůzová B, Švihálková Šindlerová L, Klinke A, Kubala L (2014) Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediat Inflamm 2014:1CrossRefGoogle Scholar
  19. 19.
    Son DJ, Kumar S, Takabe W, Woo Kim C, Ni CW, Alberts-Grill N et al (2013) The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat Commun 4:3000CrossRefGoogle Scholar
  20. 20.
    Wang W, Hein TW, Zhang C, Zawieja DC, Liao JC, Kuo L (2011) Oxidized low-density lipoprotein inhibits nitric oxide-mediated coronary arteriolar dilation by up-regulating endothelial arginase I. Microcirculation 18(1):36–45CrossRefGoogle Scholar
  21. 21.
    Kim S-R, Bae S-K, Park H-J, Kim M-K, Kim K, Park S-Y et al (2010) Thromboxane A(2) increases endothelial permeability through upregulation of interleukin-8. Biochem Biophys Res Commun 397(3):413–419CrossRefGoogle Scholar
  22. 22.
    Tatsuguchi M, Furutani M, Hinagata J, Tanaka T, Furutani Y, Imamura S et al (2003) Oxidized LDL receptor gene (OLR1) is associated with the risk of myocardial infarction. Biochem Biophys Res Commun 303(1):247–250CrossRefGoogle Scholar
  23. 23.
    Chen M, Kakutani M, Minami M, Kataoka H, Kume N, Narumiya S et al (2000) Increased expression of lectinlike oxidized low density lipoprotein receptor-1 in initial atherosclerotic lesions of Watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb Vasc Biol 20(4):1107–1115CrossRefGoogle Scholar
  24. 24.
    Yellin MJ, Brett J, Baum D, Matsushima A, Szabolcs M, Stern D et al (1995) Functional interactions of T cells with endothelial cells: the role of CD40L-CD40-mediated signals. J Exp Med 182(6):1857–1864CrossRefGoogle Scholar
  25. 25.
    Alderson MR (1993) CD40 expression by human monocytes: regulation by cytokines and activation of monocytes by the ligand for CD40. J Exp Med 178(2):669–674CrossRefGoogle Scholar
  26. 26.
    Li D, Liu L, Chen H, Sawamura T, Mehta JL (2003) LOX-1, an oxidized LDL endothelial receptor, induces CD40/CD40L signaling in human coronary artery endothelial cells. Arterioscler Thromb Vasc Biol 23(5):816–821CrossRefGoogle Scholar
  27. 27.
    Galis ZS, Sukhova GK, Lark MW, Libby P (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94(6):2493–2503CrossRefGoogle Scholar
  28. 28.
    Seo JW, Yang EJ, Yoo KH, Choi IH (2015) Macrophage differentiation from monocytes is influenced by the lipid oxidation degree of low density lipoprotein. Mediat Inflamm 2015:1CrossRefGoogle Scholar
  29. 29.
    Kiyan Y, Tkachuk S, Hilfiker-Kleiner D, Haller H, Fuhrman B, Dumler I (2014) OxLDL induces inflammatory responses in vascular smooth muscle cells via urokinase receptor association with CD36 and TLR4. J Mol Cell Cardiol 66:72–82CrossRefGoogle Scholar
  30. 30.
    Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:6–13Google Scholar
  31. 31.
    Shaikh S, Brittenden J, Lahiri R, Brown PAJ, Thies F, Wilson HM (2012) Macrophage subtypes in symptomatic carotid artery and femoral artery plaques. Eur J Vasc Endovasc Surg 44(5):491–497CrossRefGoogle Scholar
  32. 32.
    Khallou-Laschet J, Varthaman A, Fornasa G, Compain C, Gaston AT, Clement M et al (2010) Macrophage plasticity in experimental atherosclerosis. PLoS One 5(1):e8852CrossRefGoogle Scholar
  33. 33.
    Van Tits LJH, Stienstra R, van Lent PL, Netea MG, Joosten LAB, Stalenhoef AFH (2011) Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: a crucial role for Krüppel-like factor 2. Atherosclerosis 214(2):345–349CrossRefGoogle Scholar
  34. 34.
    Groeneweg M, Kanters E, Vergouwe MN, Duerink H, Kraal G, Hofker MH et al (2006) Lipopolysaccharide-induced gene expression in murine macrophages is enhanced by prior exposure to oxLDL. J Lipid Res 47(10):2259–2267CrossRefGoogle Scholar
  35. 35.
    Henriksen T, Mahoney EM, Steinberg D (1981) Enhanced macrophage degradation of low density lipoprotemi previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Med Sci 78(10):6499–6503Google Scholar
  36. 36.
    Guo L, Chen CH, Zhang LL, Cao XJ, Ma QL, Deng P et al (2015) IRAK1 mediates TLR4-induced ABCA1 downregulation and lipid accumulation in VSMCs. Cell Death Dis 6(10):e1949CrossRefGoogle Scholar
  37. 37.
    Yoshinaka Y, Shibata H, Kobayashi H, Kuriyama H, Shibuya K, Tanabe S et al (2010) A selective ACAT-1 inhibitor, K-604, stimulates collagen production in cultured smooth muscle cells and alters plaque phenotype in apolipoprotein E-knockout mice. Atherosclerosis 213(1):85–91CrossRefGoogle Scholar
  38. 38.
    Kockx MM, Herman AG (2000) Apoptosis in atherosclerosis: beneficial or detrimental? Cardiovasc Res 45:736–746Google Scholar
  39. 39.
    Wyllie AH, Kerr JFR, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68(C):251–306CrossRefGoogle Scholar
  40. 40.
    Chen C, Khismatullin DB (2015) Oxidized low-density lipoprotein contributes to atherogenesis via co-activation of macrophages and mast cells. PLoS One 10(3): e0123088Google Scholar
  41. 41.
    Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK et al (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349(24):2316–2325CrossRefGoogle Scholar
  42. 42.
    Boyle JJ, Harrington HA, Piper E, Elderfield K, Stark J, Landis RC et al (2009) Coronary intraplaque hemorrhage evokes a novel atheroprotective ma0crophage phenotype. Am J Pathol 174(3):1097–1108Google Scholar
  43. 43.
    Boyle JJ, Johns M, Lo J, Chiodini A, Ambrose N, Evans PC et al (2011) Heme induces heme oxygenase 1 via Nrf2: role in the homeostatic macrophage response to intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 31:2685–2691Google Scholar
  44. 44.
    Libby P (2002 Dec 19) Inflammation in atherosclerosis. Nature 420(6917):868–874CrossRefGoogle Scholar
  45. 45.
    Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C et al (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377:1119CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK
  2. 2.National Heart and Lung Institute, Vascular Sciences, Imperial College LondonLondonUK

Personalised recommendations