Pharmacological Targets of Hypertension

  • Haaris Rahim
  • Yasmin Bashir
  • Michael SchachterEmail author
Part of the Learning Materials in Biosciences book series (LMB)


This chapter will begin by briefly explaining the parameters that form blood pressure, in addition to the cardiovascular burden of hypertension (HTN). From there, the key physiological modulators of blood pressure, namely autonomic tone, humoral factors, local and cellular factors, will be discussed, as will the renin–angiotensin–aldosterone system. Pharmacological agents used in the treatment of HTN will then be expanded upon, with the scientific rationale for each explored. Finally, we will explore two classes of drug that present new opportunities for the therapeutic modulation of blood pressure.


  1. 1.
    Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C, et al (2018) ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary. Hypertension. 71(6): 1269–1324Google Scholar
  2. 2.
    Carretero OA, Oparil S (2000) Essential hypertension. Part I: definition and etiology. Circulation 101:329CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gaciong Z, Siński M, Lewandowski J (2013) Blood pressure control and primary prevention of stroke: summary of the recent clinical trial data and meta-analyses. Curr Hypertens Rep 15:559CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Collins R, Peto R, MacMahon S, Godwin J, Qizilbash N, Collins R et al (1990) Blood pressure, stroke, and coronary heart disease. Part 2, short-term reductions in blood pressure: overview of randomised drug trials in their epidemiological context. Lancet 335:827CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Turnbull F, Neal B, Algert C, Chalmers J, Woodward M, MacMahon S et al (2003) Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet 362:1527CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J et al (2016) Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 387:957CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL et al (2003) Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 42:1206CrossRefGoogle Scholar
  8. 8.
    Shah S, Khatri I, Freis ED (1978) Mechanism of antihypertensive effect of thiazide diuretics. Am Heart J 95:611CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hropot M, Fowler N, Karlmark B, Giebisch G (1985) Tubular action of diuretics: distal effects on electrolyte transport and acidification. Kidney Int 28:477CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Liang W, Ma H, Cao L, Yan W, Yang J (2017) Comparison of thiazide-like diuretics versus thiazide-type diuretics: a meta-analysis. J Cell Mol Med 21:2634CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Salvetti A (2006) Thiazide diuretics in the treatment of hypertension: an update. J Am Soc Nephrol 17:S25CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wittner M, Di Stefano A, Wangemann P, Greger R (1991) How do loop diuretics act? Drugs 41:1CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tamargo J, Segura J, Ruilope LM (2014) Diuretics in the treatment of hypertension. Part 2: loop diuretics and potassium-sparing agents. Expert Opin Pharmacother 15:605CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wile D (2012) Diuretics: a review. Ann Clin Biochem 49:419CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Peti-Peterdi J, Harris RC (2010) Macula Densa sensing and signaling mechanisms of renin release. J Am Soc Nephrol 21:1093CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kawai T, Forrester SJ, O’Brien S, Baggett A, Rizzo V, Eguchi S (2017) AT1 receptor signaling pathways in the cardiovascular system. Pharmacol Res 125:4CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Soundararajan R, Pearce D, Ziera T (2012) The role of the ENaC-regulatory complex in aldosterone-mediated sodium transport. Mol Cell Endocrinol 350:242CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Weber MA (2005) The role of the new β-blockers in treating cardiovascular disease. Am J Hypertens 18:169CrossRefGoogle Scholar
  19. 19.
    Barron AJ, Zaman N, Cole GD, Wensel R, Okonko DO, Francis DP (2013) Systematic review of genuine versus spurious side-effects of beta-blockers in heart failure using placebo control: recommendations for patient information. Int J Cardiol 168:3572CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gress TW, Nieto FJ, Shahar E, Wofford MR, Brancati FL (2000) Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. N Engl J Med 342:905CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Morales DR, Guthrie B, Lipworth BJ, Donnan PT, Jackson C (2011) Prescribing of β-adrenoceptor antagonists in asthma: an observational study. Thorax 66:502CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Müller DN, Luft FC (2006) Direct renin inhibition with aliskiren in hypertension and target organ damage. Clin J Am Soc Nephrol: CJASN 1:221CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gao D, Ning N, Niu X, Wei J, Sun P, Hao G (2011) Aliskiren vs. angiotensin receptor blockers in hypertension: meta-analysis of randomized controlled trials. Am J Hypertens 24:613CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Messerli FH, Bangalore S, Bavishi C, Rimoldi SF (2018) Angiotensin-converting enzyme inhibitors in hypertension: to use or not to use? J Am Coll Cardiol 71:1474CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    MacFadyen RJ, Lee AFC, Morton JJ, Pringle SD, Struthers AD (1999) How often are angiotensin II and aldosterone concentrations raised during chronic ACE inhibitor treatment in cardiac failure? Heart 82:57CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sica DA (2004) Angiotensin-converting enzyme inhibitors side effects--physiologic and non-physiologic considerations. J Clin Hypertens (Greenwich) 6:410CrossRefGoogle Scholar
  27. 27.
    Taylor AA, Siragy H, Nesbitt S (2011) Angiotensin receptor blockers: pharmacology, efficacy, and safety. J Clin Hypertens 13:677CrossRefGoogle Scholar
  28. 28.
    Turnbull F, Neal B, Pfeffer M, Kostis J, Algert C, Woodward M et al (2007) Blood pressure-dependent and independent effects of agents that inhibit the renin-angiotensin system. J Hypertens 25:951CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Munger MA (2011) Use of angiotensin receptor blockers in cardiovascular protection: current evidence and future directions. P T 36:22PubMedPubMedCentralGoogle Scholar
  30. 30.
    Strippoli GFM, Craig M, Deeks JJ, Schena FP, Craig JC (2004) Effects of angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists on mortality and renal outcomes in diabetic nephropathy: systematic review. Br Med J 329:828CrossRefGoogle Scholar
  31. 31.
    Strauss MH, Hall AS (2006) Angiotensin receptor blockers may increase risk of myocardial infarction unraveling the ARB-MI paradox. Circulation 114:838CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Jennings DL, Kalus JS, Coleman CI, Manierski C, Yee J (2007) Combination therapy with an ACE inhibitor and an angiotensin receptor blocker for diabetic nephropathy: a meta-analysis. Diabet Med 24:486CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Investigators TO (2008 [cited 2019 Jan 3]) Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med [Internet] 358(15):1547–59. Available from:
  34. 34.
    Pfeffer MA, McMurray JJV, Velazquez EJ, Rouleau J-L, Køber L, Maggioni AP et al (2003) Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med 349:1893CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Guichard JL, Clark D, Calhoun DA, Ahmed MI (2013) Aldosterone receptor antagonists: current perspectives and therapies. Vasc Health Risk Manag 9:321–31Google Scholar
  36. 36.
    Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341:709CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Chapman N, Dobson J, Wilson S, Dahlöf B, Sever PS, Wedel H et al (2007) Effect of spironolactone on blood pressure in subjects with resistant hypertension. Hypertension 49:839CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Brown NJ (2003) Eplerenone: cardiovascular protection. Circulation 107:2512CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Muntwyler J, Follath F (2001) Calcium channel blockers in treatment of hypertension. Prog Cardiovasc Dis 44(3):207–216CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Opie LH (1997) Pharmacological differences between calcium antagonists. Eur Heart J 18:71CrossRefGoogle Scholar
  41. 41.
    Hedner T (1986) Calcium channel blockers: spectrum of side effects and drug interactions. Acta Pharmacol Toxicol (Copenh) 58(Suppl 2):119–130Google Scholar
  42. 42.
    ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (2002) Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 288:2981.
  43. 43.
    Carruthers SG (1994) Adverse effects of α1-adrenergic blocking drugs. Drug Saf 11:12CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Sica DA (2007) Centrally acting antihypertensive agents: an update. J Clin Hypertens (Greenwich) 9:399CrossRefGoogle Scholar
  45. 45.
    Bavishi C, Messerli FH, Kadosh B, Ruilope LM, Kario K (2015) Role of neprilysin inhibitor combinations in hypertension: insights from hypertension and heart failure trials. Eur Heart J 36:1967CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Packer M, Califf RM, Konstam MA, Krum H, McMurray JJ, Rouleau JL et al (2002) Comparison of omapatrilat and enalapril in patients with chronic heart failure: the omapatrilat versus enalapril randomized trial of utility in reducing events (OVERTURE). Circulation 106:920CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kostis JB, Packer M, Black HR, Schmieder R, Henry D, Levy E (2004) Omapatrilat and enalapril in patients with hypertension: the omapatrilat cardiovascular treatment vs. Enalapril (OCTAVE) trial. Am J Hypertens 17:103CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR et al (2014) Angiotensin–neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371:993CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Schiffrin EL (2005) Vascular endothelin in hypertension. Vasc Pharmacol 43:19CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Haaris Rahim
    • 1
  • Yasmin Bashir
    • 1
  • Michael Schachter
    • 2
    Email author
  1. 1.Imperial College LondonLondonUK
  2. 2.National Heart and Lung Institute, Myocardial Function, Imperial College LondonLondonUK

Personalised recommendations