Advertisement

Cardiac Contractility

  • Fotios G. PitoulisEmail author
  • Pieter P. de Tombe
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

This chapter will equip you with an understanding of the determinants of cardiac contractility and the changes observed in these within the context of heart failure. We will begin by discussing the fundamentals of cardiac output, the effects of preload and afterload on ventricular function, and their clinical significance.

References

  1. 1.
    Vincent JL (2008) Understanding cardiac output. Crit Care 12(4):174CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kumada M, Azuma T, Matsuda K (1967) The cardiac output-heart rate relationship under different conditions. Jpn J Physiol 17(5):538–555. [Internet] Available from: http://joi.jlc.jst.go.jp/JST.Journalarchive/jjphysiol1950/17.538?from=CrossRefCrossRefPubMedGoogle Scholar
  3. 3.
    Wégria R, Frank CW, Wang H (1958) The effect of atrial and ventricular tachycardia on cardiac output, coronary blood flow and mean arterial pressure. Circ Res 6(5):624–632CrossRefPubMedGoogle Scholar
  4. 4.
    Hamdani N, Kooij V, Van Dijk S, Merkus D, Paulus WJ, Dos RC et al (2008) Sarcomeric dysfunction in heart failure. Cardiovasc Res 77:649–658CrossRefPubMedGoogle Scholar
  5. 5.
    Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sun YB, Irving M (2010) The molecular basis of the steep force-calcium relation in heart muscle. J Mol Cell Cardiol 48:859–865CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wiggers CJ (1951) Determinants of cardiac performance. Circulation 4(4):485–495CrossRefPubMedGoogle Scholar
  8. 8.
    Levick JR (2009) An introduction to cardiovascular physiology, 5th edn. Hodder Arnold, London, pp 51–60CrossRefGoogle Scholar
  9. 9.
    Bers DM (1991) Excitation-contraction coupling and cardiac contractile force. Springer, NetherlandsGoogle Scholar
  10. 10.
    Allen DG, Kentish JC (1985) The cellular basis of the length-tension relation in cardiac muscle. J Mol Cell Cardiol 17:821–840CrossRefPubMedGoogle Scholar
  11. 11.
    de Tombe PP, ter Keurs HEDJ (2016) Cardiac muscle mechanics: sarcomere length matters. J Mol Cell Cardiol 91:148–150CrossRefPubMedGoogle Scholar
  12. 12.
    Fuchs F, Smith SH (2001) Calcium, cross-bridges, and the Frank-Starling relationship. News Physiol Sci 16(1):5–10. [Internet] Available from: http://physiologyonline.physiology.org/content/16/1/5.abstractPubMedGoogle Scholar
  13. 13.
    Solaro RJ (2007) Mechanisms of the Frank-Starling law of the heart: the beat goes on. Biophys J 93(12):4095–4096CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Farman GP, Gore D, Allen E, Schoenfelt K, Irving TC, De Tombe PP (2011) Myosin head orientation: a structural determinant for the Frank-Starling relationship. Am J Physiol Heart Circ Physiol 300:2155–2160CrossRefGoogle Scholar
  15. 15.
    Sonneblick HE, Downing SE (1963) Afterload as a primary determinant of ventricular performance. Am J Physiol Heart Circ Physiol 204:604–610Google Scholar
  16. 16.
    Nozawa T, Cheng CP, Noda T, Little WC (1994) Relation between left ventricular oxygen consumption and pressure-volume area in conscious dogs. Circulation 89(2):810–817CrossRefPubMedGoogle Scholar
  17. 17.
    Suga H, Hayashi T, Shirahata M (1981) Ventricular systolic pressure-volume area as predictor of cardiac oxygen consumption. Am J Phys 240(1):H39–H44CrossRefGoogle Scholar
  18. 18.
    Solaro RJ (2011) Regulation of cardiac contractility [internet]. In: Colloquium series on integrated systems physiology: from molecule to function, vol 3, pp 1–50. Available from: http://www.ncbi.nlm.nih.gov/books/NBK54078/Google Scholar
  19. 19.
    Florea VG, Cohn JN (2014) The autonomic nervous system and heart failure. Circ Res 114:1815–1826CrossRefPubMedGoogle Scholar
  20. 20.
    Katz AM (1988) Influence of altered inotropy and lusitropy on ventricular pressure-volume loops. J Am Coll Cardiol 11(2):438–445CrossRefPubMedGoogle Scholar
  21. 21.
    Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32:314CrossRefPubMedGoogle Scholar
  22. 22.
    Ky B, French B, May Khan A, Plappert T, Wang A, Chirinos JA et al (2013) Ventricular-arterial coupling, remodeling, and prognosis in chronic heart failure. J Am Coll Cardiol 62:1165CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Burkhoff D (2013) Pressure-volume loops in clinical research. J Am Coll Cardiol 62(13):1173–1176CrossRefPubMedGoogle Scholar
  24. 24.
    Burchfield JS, Xie M, Hill JA (2013) Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation 128(4):388–400CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Schotola H, Sossalla ST, Renner A, Gummert J, Danner BC, Schott P et al (2017) The contractile adaption to preload depends on the amount of afterload. ESC Hear Fail 4:468CrossRefGoogle Scholar
  26. 26.
    Machackova J, Barta J, Dhalla NS (2006) Myofibrillar remodelling in cardiac hypertrophy, heart failure and cardiomyopathies. Can J Cardiol 22:953CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Toischer K, Rokita AG, Unsöld B, Zhu W, Kararigas G, Sossalla S et al (2010) Differential cardiac remodeling in preload versus afterload. Circulation 122(10):993–1003CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Drakos SG, Terrovitis JV, Anastasiou-Nana MI, Nanas JN (2007) Reverse remodeling during long-term mechanical unloading of the left ventricle. J Mol Cell Cardiol 43:231–242CrossRefPubMedGoogle Scholar
  29. 29.
    Ibrahim M, Al Masri A, Navaratnarajah M, Siedlecka U, Soppa GK, Moshkov A et al (2010) Prolonged mechanical unloading affects cardiomyocyte excitation-contraction coupling, transverse-tubule structure, and the cell surface. FASEB J 24(9):3321–3329. [Internet] Available from: http://www.fasebj.org/cgi/doi/10.1096/fj.10-156638CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ibrahim M, Kukadia P, Siedlecka U, Cartledge JE, Navaratnarajah M, Tokar S et al (2012) Cardiomyocyte Ca2+handling and structure is regulated by degree and duration of mechanical load variation. J Cell Mol Med 16(12):2910–2918CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kishi T (2012) Heart failure as an autonomic nervous system dysfunction. J Cardiol 59:117–122CrossRefPubMedGoogle Scholar
  32. 32.
    M. G. Hibberd, B. R. Jewell, (1982) Calcium- and length-dependent force production in rat ventricular muscle. The Journal of Physiology 329 (1):527-540CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Heart and Lung Institute, Myocardial Function, Imperial College LondonLondonUK
  2. 2.Department of Physiology and BiophysicsCollege of Medicine, University of IllinoisChicagoUSA

Personalised recommendations