Conduits for Coronary Artery Bypass Surgery

  • Cristiano Spadaccio
  • Mario F. L. GaudinoEmail author


Since its first introduction coronary artery bypass grafting (CABG) has become one of the mainstays in the treatment of ischemic heart disease. Both arterial and venous conduits as well as a variety of their combinations can be used. Long saphenous vein is the predominantly used venous conduit. Left internal thoracic artery (LITA), right internal thoracic artery (RITA), radial artery (RA), and right gastroepiploic artery (RGEA) are currently in use as arterial grafts. Pedicled or skeletonized harvesting techniques have been described for arterial conduits with the latter being recommended for ITAs. Minimally invasive endoscopic harvesting techniques can be applied to radial artery and long saphenous vein. The latter can also be harvested preserving the tissue surrounding the vessel (no-touch technique) as it is thought to improve patency rate. Biological augmentation or physical reinforcement of saphenous vein grafts (SVG) is also being proposed to improve patency. As far the grafting strategy is concerned, there is an established consensus on the use of arterial conduit on the left anterior descending coronary due to the well-established prognostic benefit. The choice of the second and further conduits for the remaining targets is still an area of debate due to the discrepancy in outcomes observed among randomized and large retrospective studies published in the literature. However, recent meta-analyses are pointing at the superiority of an arterial strategy in terms of long-term patency and outcomes. On the basis of the evidence currently available and on the basis of the long-term results of previous and new randomized controlled trials (RCTs), a multiple arterial grafting strategy should be the preferred approach in the majority of the patients and an ad hoc decisional algorithm has been recently suggested in this chapter.


Arterial conduits Left internal thoracic artery Radial artery Right gastroepiploic artery Right internal thoracic artery Saphenous vein grafts Venous conduits 


  1. 1.
    Otsuka F, Yahagi K, Sakakura K, Virmani R. Why is the mammary artery so special and what protects it from atherosclerosis? Ann Cardiothorac Surg. 2013;2:519–26.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Gaudino M, Antoniades C, Benedetto U, Deb S, Di Franco A, Di Giammarco G, et al. Mechanisms, consequences, and prevention of coronary graft failure. Circulation. 2017;136:1749–64.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Henriquez-Pino JA, Gomes WJ, Prates JC, Buffolo E. Surgical anatomy of the internal thoracic artery. Ann Thorac Surg. 1997;64:1041–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Dai C, Lu Z, Zhu H, Xue S, Lian F. Bilateral internal mammary artery grafting and risk of sternal wound infection: evidence from observational studies. Ann Thorac Surg. 2013;95:1938–45.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Deo SV, Shah IK, Dunlay SM, Erwin PJ, Locker C, Altarabsheh SE, et al. Bilateral internal thoracic artery harvest and deep sternal wound infection in diabetic patients. Ann Thorac Surg. 2013;95:862–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Loop FD, Lytle BW, Cosgrove DM, Stewart RW, Goormastic M, Williams GW, et al. Influence of the internal-mammary-artery graft on 10-year survival and other cardiac events. N Engl J Med. 1986;314:1–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Martinez-Gonzalez B, Reyes-Hernandez CG, Quiroga-Garza A, Rodriguez-Rodriguez VE, Esparza-Hernandez CN, Elizondo-Omana RE, et al. Conduits used in coronary artery bypass grafting: a review of morphological studies. Ann Thorac Cardiovasc Surg. 2017;23:55–65.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Tatoulis J, Buxton BF, Fuller JA. The right internal thoracic artery: is it underutilized? Curr Opin Cardiol. 2011;26:528–35.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Lopes RD, Mehta RH, Hafley GE, Williams JB, Mack MJ, Peterson ED, et al. Relationship between vein graft failure and subsequent clinical outcomes after coronary artery bypass surgery. Circulation. 2012;125:749–56.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Baikoussis NG, Papakonstantinou NA, Apostolakis E. Radial artery as graft for coronary artery bypass surgery: advantages and disadvantages for its usage focused on structural and biological characteristics. J Cardiol. 2014;63:321–8.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Gaudino M, Crea F, Cammertoni F, Mazza A, Toesca A, Massetti M. Technical issues in the use of the radial artery as a coronary artery bypass conduit. Ann Thorac Surg. 2014;98:2247–54.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Jarvis MA, Jarvis CL, Jones PR, Spyt TJ. Reliability of Allen’s test in selection of patients for radial artery harvest. Ann Thorac Surg. 2000;70:1362–5.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Carpentier A, Guermonprez JL, Deloche A, Frechette C, DuBost C. The aorta-to-coronary radial artery bypass graft. A technique avoiding pathological changes in grafts. Ann Thorac Surg. 1973;16:111–21.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Acar C, Jebara VA, Portoghese M, Beyssen B, Pagny JY, Grare P, et al. Revival of the radial artery for coronary artery bypass grafting. Ann Thorac Surg. 1992;54:652–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Myers MG, Fremes SE. Prevention of radial artery graft spasm: a survey of Canadian surgical centres. Can J Cardiol. 2003;19:677–81.PubMedGoogle Scholar
  16. 16.
    Gaudino M, Prati F, Caradonna E, Trani C, Burzotta F, Schiavoni G, et al. Implantation in coronary circulation induces morphofunctional transformation of radial grafts from muscular to elastomuscular. Circulation. 2005;112(9 Suppl):I208–11.PubMedGoogle Scholar
  17. 17.
    Patel A, Asopa S, Dunning J. Should patients receiving a radial artery conduit have post-operative calcium channel blockers? Interact Cardiovasc Thorac Surg. 2006;5:251–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Tatoulis J, Buxton BF, Fuller JA, Meswani M, Theodore S, Powar N, et al. Long-term patency of 1108 radial arterial-coronary angiograms over 10 years. Ann Thorac Surg. 2009;88:23–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Gaudino M, Tondi P, Benedetto U, Milazzo V, Flore R, Glieca F, et al. Radial artery as a coronary artery bypass conduit: 20-year results. J Am Coll Cardiol. 2016;68:603–10.PubMedCrossRefGoogle Scholar
  20. 20.
    Amano A, Takahashi A, Hirose H. Skeletonized radial artery grafting: improved angiographic results. Ann Thorac Surg. 2002;73:1880–7.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Rukosujew A, Reichelt R, Fabricius AM, Drees G, Tjan TD, Rothenburger M, et al. Skeletonization versus pedicle preparation of the radial artery with and without the ultrasonic scalpel. Ann Thorac Surg. 2004;77:120–5.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Deb S, Cohen EA, Singh SK, Une D, Laupacis A, Fremes SE, et al. Radial artery and saphenous vein patency more than 5 years after coronary artery bypass surgery: results from RAPS (Radial Artery Patency Study). J Am Coll Cardiol. 2012;60:28–35.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Gaudino M, Alessandrini F, Pragliola C, Cellini C, Glieca F, Luciani N, et al. Effect of target artery location and severity of stenosis on mid-term patency of aorta-anastomosed vs. internal thoracic artery-anastomosed radial artery grafts. Eur J Cardiothorac Surg. 2004;25:424–8.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Gaudino M, Benedetto U, Fremes S, Biondi-Zoccai G, Sedrakyan A, Puskas JD, et al. Radial-artery or saphenous-vein grafts in coronary-artery bypass surgery. N Engl J Med. 2018;378:2069–77.PubMedCrossRefGoogle Scholar
  25. 25.
    Goldman S, Sethi GK, Holman W, Thai H, McFalls E, Ward HB, et al. Radial artery grafts vs saphenous vein grafts in coronary artery bypass surgery: a randomized trial. JAMA. 2011;305:167–74.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Collins P, Webb CM, Chong CF, Moat NE. Radial artery versus saphenous vein patency trial I. Radial artery versus saphenous vein patency randomized trial: five-year angiographic follow-up. Circulation. 2008;117:2859–64.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Hayward PA, Buxton BF. Mid-term results of the radial artery patency and clinical outcomes randomized trial. Ann Cardiothorac Surg. 2013;2:458–66.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Benedetto U, Angeloni E, Refice S, Sinatra R. Radial artery versus saphenous vein graft patency: meta-analysis of randomized controlled trials. J Thorac Cardiovasc Surg. 2010;139:229–31.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Athanasiou T, Saso S, Rao C, Vecht J, Grapsa J, Dunning J, et al. Radial artery versus saphenous vein conduits for coronary artery bypass surgery: forty years of competition—which conduit offers better patency? A systematic review and meta-analysis. Eur J Cardiothorac Surg. 2011;40:208–20.PubMedCrossRefGoogle Scholar
  30. 30.
    Cao C, Manganas C, Horton M, Bannon P, Munkholm-Larsen S, Ang SC, et al. Angiographic outcomes of radial artery versus saphenous vein in coronary artery bypass graft surgery: a meta-analysis of randomized controlled trials. J Thorac Cardiovasc Surg. 2013;146:255–61.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang H, Wang ZW, Wu HB, Hu XP, Zhou Z, Xu P. Radial artery graft vs. saphenous vein graft for coronary artery bypass surgery: which conduit offers better efficacy? Herz. 2014;39:458–65.PubMedCrossRefGoogle Scholar
  32. 32.
    Benedetto U, Raja SG, Albanese A, Amrani M, Biondi-Zoccai G, Frati G. Searching for the second best graft for coronary artery bypass surgery: a network meta-analysis of randomized controlled trials†. Eur J Cardiothorac Surg. 2015;47:59–65.PubMedCrossRefGoogle Scholar
  33. 33.
    Hu X, Zhao Q. Systematic comparison of the effectiveness of radial artery and saphenous vein or right internal thoracic artery coronary bypass grafts in non-left anterior descending coronary arteries. J Zhejiang Univ Sci B. 2011;12:273–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hoffman DM, Dimitrova KR, Lucido DJ, Dincheva GR, Geller CM, Balaram SK, et al. Optimal conduit for diabetic patients: propensity analysis of radial and right internal thoracic arteries. Ann Thorac Surg. 2014;98:30–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Tranbaugh RF, Dimitrova KR, Lucido DJ, Hoffman DM, Dincheva GR, Geller CM, et al. The second best arterial graft: a propensity analysis of the radial artery versus the free right internal thoracic artery to bypass the circumflex coronary artery. J Thorac Cardiovasc Surg. 2014;147:133–40.PubMedCrossRefGoogle Scholar
  36. 36.
    van Son JA, Smedts F, Vincent JG, van Lier HJ, Kubat K. Comparative anatomic studies of various arterial conduits for myocardial revascularization. J Thorac Cardiovasc Surg. 1990;99:703–7.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Suma H. The right gastroepiploic artery graft for coronary artery bypass grafting: a 30-year experience. Korean J Thorac Cardiovasc Surg. 2016;49:225–31.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Pym J, Brown PM, Charrette EJ, Parker JO, West RO. Gastroepiploic-coronary anastomosis. A viable alternative bypass graft. J Thorac Cardiovasc Surg. 1987;94:256–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Suma H, Fukumoto H, Takeuchi A. Coronary artery bypass grafting by utilizing in situ right gastroepiploic artery: basic study and clinical application. Ann Thorac Surg. 1987;44:394–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Takayama T, Suma H, Wanibuchi Y, Tohda E, Matsunaka T, Yamashita S. Physiological and pharmacological responses of arterial graft flow after coronary artery bypass grafting measured with an implantable ultrasonic Doppler miniprobe. Circulation. 1992;86(5 Suppl):II217–23.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Ochiai M, Ohno M, Taguchi J, Hara K, Suma H, Isshiki T, et al. Responses of human gastroepiploic arteries to vasoactive substances: comparison with responses of internal mammary arteries and saphenous veins. J Thorac Cardiovasc Surg. 1992;104:453–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Suma H, Takanashi R. Arteriosclerosis of the gastroepiploic and internal thoracic arteries. Ann Thorac Surg. 1990;50:413–6.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Saito T, Suma H, Terada Y, Wanibuchi Y, Fukuda S, Furuta S. Availability of the in situ right gastroepiploic artery for coronary artery bypass. Ann Thorac Surg. 1992;53:266–8.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Suma H, Wanibuchi Y, Furuta S, Takeuchi A. Does use of gastroepiploic artery graft increase surgical risk? J Thorac Cardiovasc Surg. 1991;101:121–5.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Hillis LD, Smith PK, Anderson JL, Bittl JA, Bridges CR, Byrne JG, et al. 2011 ACCF/AHA guideline for coronary artery bypass graft surgery. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, Society of Cardiovascular Anesthesiologists, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;58:e123–210.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Suzuki T, Asai T, Nota H, Kuroyanagi S, Kinoshita T, Takashima N, et al. Early and long-term patency of in situ skeletonized gastroepiploic artery after off-pump coronary artery bypass graft surgery. Ann Thorac Surg. 2013;96:90–5.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Suma H, Tanabe H, Takahashi A, Horii T, Isomura T, Hirose H, et al. Twenty years experience with the gastroepiploic artery graft for CABG. Circulation. 2007;116(11 Suppl):I188–91.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Glineur D, D’Hoore W, Price J, Dormeus S, de Kerchove L, Dion R, et al. Survival benefit of multiple arterial grafting in a 25-year single-institutional experience: the importance of the third arterial graft. Eur J Cardiothorac Surg. 2012;42:284–90.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Suzuki T, Asai T, Matsubayashi K, Kambara A, Kinoshita T, Takashima N, et al. In off-pump surgery, skeletonized gastroepiploic artery is superior to saphenous vein in patients with bilateral internal thoracic arterial grafts. Ann Thorac Surg. 2011;91:1159–64.PubMedCrossRefGoogle Scholar
  50. 50.
    Pevni D, Uretzky G, Yosef P, Yanay BG, Shapira I, Nesher N, et al. Revascularization of the right coronary artery in bilateral internal thoracic artery grafting. Ann Thorac Surg. 2005;79:564–9.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Hwang HY, Cho KR, Kim KB. Equivalency of right internal thoracic artery and right gastroepiploic artery composite grafts: five-year outcomes. Ann Thorac Surg. 2013;96:2061–8.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Motwani JG, Topol EJ. Aortocoronary saphenous vein graft disease: pathogenesis, predisposition, and prevention. Circulation. 1998;97:916–31.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Allaire E, Clowes AW. Endothelial cell injury in cardiovascular surgery: the intimal hyperplastic response. Ann Thorac Surg. 1997;63:582–91.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Spadaccio C, Nappi F, Al-Attar N, Coccia R, Perluigi M, Di Domenico F. Current developments in drug eluting devices: introductory editorial: drug-eluting stents or drug-eluting grafts? Insights from proteomic analysis. Drug Target Insights. 2016;10(Suppl 1):15–9.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Hess CN, Lopes RD, Gibson CM, Hager R, Wojdyla DM, Englum BR, et al. Saphenous vein graft failure after coronary artery bypass surgery: insights from PREVENT IV. Circulation. 2014;130:1445–51.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Souza D. A new no-touch preparation technique. Technical notes. Scand J Thorac Cardiovasc Surg. 1996;30:41–4.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Verma S, Lovren F, Pan Y, Yanagawa B, Deb S, Karkhanis R, et al. Pedicled no-touch saphenous vein graft harvest limits vascular smooth muscle cell activation: the PATENT saphenous vein graft study. Eur J Cardiothorac Surg. 2014;45:717–25.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Dreifaldt M, Souza D, Bodin L, Shi-Wen X, Dooley A, Muddle J, et al. The vasa vasorum and associated endothelial nitric oxide synthase is more important for saphenous vein than arterial bypass grafts. Angiology. 2013;64:293–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Samano N, Geijer H, Liden M, Fremes S, Bodin L, Souza D. The no-touch saphenous vein for coronary artery bypass grafting maintains a patency, after 16 years, comparable to the left internal thoracic artery: a randomized trial. J Thorac Cardiovasc Surg. 2015;150:880–8.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kopjar T, Dashwood MR. Endoscopic versus “no-touch” saphenous vein harvesting for coronary artery bypass grafting: a trade-off between wound healing and graft patency. Angiology. 2016;67:121–32.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    van Diepen S, Brennan JM, Hafley GE, Reyes EM, Allen KB, Ferguson TB, et al. Endoscopic harvesting device type and outcomes in patients undergoing coronary artery bypass surgery. Ann Surg. 2014;260:402–8.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Sastry P, Rivinius R, Harvey R, Parker RA, Rahm AK, Thomas D, et al. The influence of endoscopic vein harvesting on outcomes after coronary bypass grafting: a meta-analysis of 267,525 patients. Eur J Cardiothorac Surg. 2013;44:980–9.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Lopes RD, Hafley GE, Allen KB, Ferguson TB, Peterson ED, Harrington RA, et al. Endoscopic versus open vein-graft harvesting in coronary-artery bypass surgery. N Engl J Med. 2009;361:235–44.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Rousou LJ, Taylor KB, Lu XG, Healey N, Crittenden MD, Khuri SF, et al. Saphenous vein conduits harvested by endoscopic technique exhibit structural and functional damage. Ann Thorac Surg. 2009;87:62–70.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Deppe AC, Liakopoulos OJ, Choi YH, Slottosch I, Kuhn EW, Scherner M, et al. Endoscopic vein harvesting for coronary artery bypass grafting: a systematic review with meta-analysis of 27,789 patients. J Surg Res. 2013;180:114–24.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Williams JB, Peterson ED, Brennan JM, Sedrakyan A, Tavris D, Alexander JH, et al. Association between endoscopic vs open vein-graft harvesting and mortality, wound complications, and cardiovascular events in patients undergoing CABG surgery. JAMA. 2012;308:475–84.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Shroyer AL, Grover FL, Hattler B, Collins JF, McDonald GO, Kozora E, et al. On-pump versus off-pump coronary-artery bypass surgery. N Engl J Med. 2009;361:1827–37.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Hwang HY, Kim JS, Oh SJ, Kim KB. A randomized comparison of the saphenous vein versus right internal thoracic artery as a Y-composite graft (SAVE RITA) trial: early results. J Thorac Cardiovasc Surg. 2012;144:1027–33.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Tedoriya T, Kawasuji M, Sakakibara N, Ueyama K, Watanabe Y. Pressure characteristics in arterial grafts for coronary bypass surgery. Cardiovasc Surg. 1995;3:381–5.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Kim KB, Hwang HY, Hahn S, Kim JS, Oh SJ. A randomized comparison of the saphenous vein versus right internal thoracic artery as a Y-composite graft (SAVE RITA) trial: one-year angiographic results and mid-term clinical outcomes. J Thorac Cardiovasc Surg. 2014;148:901–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Gaudino M, Fremes SE. The SAVE RITA trial at 5 years: more evidence is needed to transform a vein to an artery. J Thorac Cardiovasc Surg. 2018;156:1434–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Alexander JH, Hafley G, Harrington RA, Peterson ED, Ferguson TB Jr, Lorenz TJ, et al. Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: a randomized controlled trial. JAMA. 2005;294:2446–54.PubMedCrossRefGoogle Scholar
  73. 73.
    Mawhinney JA, Mounsey CA, Taggart DP. The potential role of external venous supports in coronary artery bypass graft surgery. Eur J Cardiothorac Surg. 2018;53:1127–34.PubMedCrossRefGoogle Scholar
  74. 74.
    Inderbitzin DT, Bremerich J, Matt P, Grapow MT, Eckstein FS, Reuthebuch O. One-year patency control and risk analysis of eSVS(R)-mesh-supported coronary saphenous vein grafts. J Cardiothorac Surg. 2015;10:108.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Taggart DP, Amin S, Djordjevic J, Oikonomou EK, Thomas S, Kampoli AM, et al. A prospective study of external stenting of saphenous vein grafts to the right coronary artery: the VEST II study. Eur J Cardiothorac Surg. 2017;51:952–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Amin S, Werner RS, Madsen PL, Krasopoulos G, Taggart DP. Influence of external stenting on venous graft flow parameters in coronary artery bypass grafting: a randomized study. Interact Cardiovasc Thorac Surg. 2018;26:926–31.PubMedCrossRefGoogle Scholar
  77. 77.
    Gaudino M, Alexander JH, Bakaeen FG, Ballman K, Barili F, Calafiore AM, et al. Randomized comparison of the clinical outcome of single versus multiple arterial grafts: the ROMA trial-rationale and study protocol. Eur J Cardiothorac Surg. 2017;52:1031–40.PubMedCrossRefGoogle Scholar
  78. 78.
    Gaudino M, Taggart D, Suma H, Puskas JD, Crea F, Massetti M. The choice of conduits in coronary artery bypass surgery. J Am Coll Cardiol. 2015;66:1729–37.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Cardiothoracic SurgeryGolden Jubilee National HospitalGlasgowUK
  2. 2.College of Medical, Veterinary and Life Sciences, Institute of Cardiovascular and Medical SciencesUniversity of GlasgowGlasgowUK
  3. 3.Department of Cardiothoracic SurgeryWeill Cornell Medicine, New York—Presbyterian HospitalNew YorkUSA

Personalised recommendations