Skip to main content

Onco-omics Approaches and Applications in Clinical Trials for Cancer Patients

  • Chapter
  • First Online:
Translational Research and Onco-Omics Applications in the Era of Cancer Personal Genomics

Abstract

Omics technologies have revolutionised fundamental and medical research. Oncology is perhaps the field where these technologies have been most rapidly adopted and where they have had their biggest impact, dramatically transforming clinical practice guidelines over a very short period of time. Along with this transformation has come an even larger array of technologies, tools and jargon, that make following the most recent developments in the field a truly daunting task for those not involved in it. This chapter is intended to provide a general overview of evolving topics in oncology research in the era of big data analysis and precision medicine, with a specific focus on the use of tumour biomarkers, tumour biomarker tests, targeted drugs and the changing landscape of clinical trial designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schilsky RL (2009) Personalizing cancer care: American society of clinical oncology presidential address 2009. J Clin Oncol 27(23):3725–3730. https://doi.org/10.1200/JCO.2009.24.6827

    Article  PubMed  Google Scholar 

  2. Hayes DF (2013) OMICS-based personalized oncology: if it is worth doing, it is worth doing well! BMC Med 11:221. https://doi.org/10.1186/1741-7015-11-221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Reuter JA, Spacek DV, Snyder MP (2015) High-throughput sequencing technologies. Mol Cell 58(4):586–597. https://doi.org/10.1016/j.molcel.2015.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lopez J, Harris S, Roda D, Yap TA (2015) Precision medicine for molecularly targeted agents and immunotherapies in early-phase clinical trials. Transl Oncogenomics 7(Suppl 1):1–11. https://doi.org/10.4137/TOG.S30533

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen R, Snyder M (2012) Systems biology: personalized medicine for the future? Curr Opin Pharmacol 12(5):623–628. https://doi.org/10.1016/j.coph.2012.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Casamassimi A, Federico A, Rienzo M, Esposito S, Ciccodicola A (2017) Transcriptome profiling in human diseases: new advances and perspectives. Int J Mol Sci 18(8). https://doi.org/10.3390/ijms18081652

    Article  PubMed Central  Google Scholar 

  7. Hood LE, Omenn GS, Moritz RL, Aebersold R, Yamamoto KR, Amos M, Hunter-Cevera J, Locascio L, Workshop P (2012) New and improved proteomics technologies for understanding complex biological systems: addressing a grand challenge in the life sciences. Proteomics 12(18):2773–2783. https://doi.org/10.1002/pmic.201270086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Omenn GS, Menon R, Zhang Y (2013) Innovations in proteomic profiling of cancers: alternative splice variants as a new class of cancer biomarker candidates and bridging of proteomics with structural biology. J Proteome 90:28–37. https://doi.org/10.1016/j.jprot.2013.04.007

    Article  CAS  Google Scholar 

  9. Goossens N, Nakagawa S, Sun X, Hoshida Y (2015) Cancer biomarker discovery and validation. Transl Cancer Res 4(3):256–269. https://doi.org/10.3978/j.issn.2218-676X.2015.06.04

    Article  CAS  PubMed  Google Scholar 

  10. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, Pacey S, Baird R, Rosenfeld N (2017) Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 17(4):223–238. https://doi.org/10.1038/nrc.2017.7

    Article  CAS  PubMed  Google Scholar 

  11. Hayes DF, Schott AF (2015) Personalized medicine: genomics trials in oncology. Trans Am Clin Climatol Assoc 126:133–143

    PubMed  PubMed Central  Google Scholar 

  12. Van Poznak C, Somerfield MR, Bast RC, Cristofanilli M, Goetz MP, Gonzalez-Angulo AM, Hicks DG, Hill EG, Liu MC, Lucas W, Mayer IA, Mennel RG, Symmans WF, Hayes DF, Harris LN (2015) Use of biomarkers to guide decisions on systemic therapy for women with metastatic breast cancer: American society of clinical oncology clinical practice guideline. J Clin Oncol 33(24):2695–2704. https://doi.org/10.1200/JCO.2015.61.1459

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, Wolter JM, Paton V, Shak S, Lieberman G, Slamon DJ (1999) Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17(9):2639–2648. https://doi.org/10.1200/JCO.1999.17.9.2639

    Article  CAS  PubMed  Google Scholar 

  14. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792. https://doi.org/10.1056/NEJM200103153441101

    Article  CAS  PubMed  Google Scholar 

  15. Viale G, Paterson J, Bloch M, Csathy G, Allen D, Dell’Orto P, Kjaersgaard G, Levy YY, Jorgensen JT (2016) Assessment of HER2 amplification status in breast cancer using a new automated HER2 IQFISH pharmDx (Dako Omnis) assay. Pathol Res Pract 212(8):735–742. https://doi.org/10.1016/j.prp.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  16. Siegelin MD, Borczuk AC (2014) Epidermal growth factor receptor mutations in lung adenocarcinoma. Lab Invest 94(2):129–137. https://doi.org/10.1038/labinvest.2013.147

    Article  CAS  PubMed  Google Scholar 

  17. Sakurada A, Shepherd FA, Tsao MS (2006) Epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer: impact of primary or secondary mutations. Clin Lung Cancer 7(Suppl 4):S138–S144

    Article  CAS  PubMed  Google Scholar 

  18. Arrieta O, Cardona AF, Corrales L, Campos-Parra AD, Sanchez-Reyes R, Amieva-Rivera E, Rodriguez J, Vargas C, Carranza H, Otero J, Karachaliou N, Astudillo H, Rosell R, Clica P (2015) The impact of common and rare EGFR mutations in response to EGFR tyrosine kinase inhibitors and platinum-based chemotherapy in patients with non-small cell lung cancer. Lung Cancer 87(2):169–175. https://doi.org/10.1016/j.lungcan.2014.12.009

    Article  PubMed  Google Scholar 

  19. Arrieta O, Cardona AF, Martin C, Mas-Lopez L, Corrales-Rodriguez L, Bramuglia G, Castillo-Fernandez O, Meyerson M, Amieva-Rivera E, Campos-Parra AD, Carranza H, Gomez de la Torre JC, Powazniak Y, Aldaco-Sarvide F, Vargas C, Trigo M, Magallanes-Maciel M, Otero J, Sanchez-Reyes R, Cuello M (2015) Updated frequency of EGFR and KRAS mutations in nonsmall-cell lung cancer in Latin America: The Latin-American consortium for the investigation of lung cancer (CLICaP).. Journal of thoracic oncology : official publication of the International Association for the Study of. Lung Cancer 10(5):838–843. https://doi.org/10.1097/JTO.0000000000000481

    Article  CAS  Google Scholar 

  20. Sheikine Y, Rangachari D, McDonald DC, Huberman MS, Folch ES, VanderLaan PA, Costa DB (2016) EGFR testing in advanced non-small-cell lung cancer, a mini-review. Clin Lung Cancer 17(6):483–492. https://doi.org/10.1016/j.cllc.2016.05.016

    Article  CAS  PubMed  Google Scholar 

  21. Cyriac G, Gandhi L (2018) Emerging biomarkers for immune checkpoint inhibition in lung cancer. Semin Cancer Biol 52:269–277. https://doi.org/10.1016/j.semcancer.2018.05.006

    Article  CAS  PubMed  Google Scholar 

  22. Li J, Witten DM, Johnstone IM, Tibshirani R (2012) Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics 13(3):523–538. https://doi.org/10.1093/biostatistics/kxr031

    Article  PubMed  Google Scholar 

  23. Witten DM, Tibshirani R (2013) Scientific research in the age of omics: the good, the bad, and the sloppy. JAMIA 20(1):125–127. https://doi.org/10.1136/amiajnl-2012-000972

    Article  PubMed  Google Scholar 

  24. Moore HM, Kelly A, Jewell SD, McShane LM, Clark DP, Greenspan R, Hainaut P, Hayes DF, Kim P, Mansfield E, Potapova O, Riegman P, Rubinstein Y, Seijo E, Somiari S, Watson P, Weier HU, Zhu C, Vaught J (2011) Biospecimen reporting for improved study quality. Biopreserv Biobanking 9(1):57–70. https://doi.org/10.1089/bio.2010.0036

    Article  Google Scholar 

  25. Moore HM, Kelly AB, Jewell SD, McShane LM, Clark DP, Greenspan R, Hayes DF, Hainaut P, Kim P, Mansfield E, Potapova O, Riegman P, Rubinstein Y, Seijo E, Somiari S, Watson P, Weier HU, Zhu C, Vaught J (2011) Biospecimen reporting for improved study quality (BRISQ). J Proteome Res 10(8):3429–3438. https://doi.org/10.1021/pr200021n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moore HM, Kelly AB, Jewell SD, McShane LM, Clark DP, Greenspan R, Hayes DF, Hainaut P, Kim P, Mansfield EA, Potapova O, Riegman P, Rubinstein Y, Seijo E, Somiari S, Watson P, Weier HU, Zhu C, Vaught J (2011) Biospecimen reporting for improved study quality (BRISQ). Cancer Cytopathol 119(2):92–101. https://doi.org/10.1002/cncy.20147

    Article  PubMed  Google Scholar 

  27. McShane LM, Hayes DF (2012) Publication of tumor marker research results: the necessity for complete and transparent reporting. J Clin Oncol 30(34):4223–4232. https://doi.org/10.1200/JCO.2012.42.6858

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ratain MJ, Glassman RH (2007) Biomarkers in phase I oncology trials: signal, noise, or expensive distraction? Clin Cancer Res 13(22):6545–6548

    Article  CAS  PubMed  Google Scholar 

  29. Goulart BH, Clark JW, Pien HH, Roberts TG, Finkelstein SN, Chabner BA (2007) Trends in the use and role of biomarkers in phase I oncology trials. Clin Cancer Res 13(22 Pt 1):6719–6726. https://doi.org/10.1158/1078-0432.CCR-06-2860

    Article  CAS  PubMed  Google Scholar 

  30. Io M (2012) Evolution of translational omics: lessons learned and the path forward. The National Academies Press, Washington, DC. https://doi.org/10.17226/13297

    Book  Google Scholar 

  31. McShane LM, Cavenagh MM, Lively TG, Eberhard DA, Bigbee WL, Williams PM, Mesirov JP, Polley M-YC, Kim KY, Tricoli JV, Taylor JMG, Shuman DJ, Simon RM, Doroshow JH, Conley BA (2013) Criteria for the use of omics-based predictors in clinical trials. Nature 502(7471):317–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carden CP, Sarker D, Postel-Vinay S, Yap TA, Attard G, Banerji U, Garrett MD, Thomas GV, Workman P, Kaye SB, de Bono JS (2010) Can molecular biomarker-based patient selection in phase I trials accelerate anticancer drug development? Drug Discov Today 15(3–4):88–97. https://doi.org/10.1016/j.drudis.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  33. Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard JY, Nishiwaki Y, Vansteenkiste J, Kudoh S, Rischin D, Eek R, Horai T, Noda K, Takata I, Smit E, Averbuch S, Macleod A, Feyereislova A, Dong RP, Baselga J (2003) Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J Clin Oncol 21(12):2237–2246. https://doi.org/10.1200/JCO.2003.10.038

    Article  CAS  PubMed  Google Scholar 

  34. Kris MG, Natale RB, Herbst RS, Lynch TJ Jr, Prager D, Belani CP, Schiller JH, Kelly K, Spiridonidis H, Sandler A, Albain KS, Cella D, Wolf MK, Averbuch SD, Ochs JJ, Kay AC (2003) Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290(16):2149–2158. https://doi.org/10.1001/jama.290.16.2149

    Article  CAS  PubMed  Google Scholar 

  35. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, Campos D, Maoleekoonpiroj S, Smylie M, Martins R, van Kooten M, Dediu M, Findlay B, Tu D, Johnston D, Bezjak A, Clark G, Santabarbara P, Seymour L, National Cancer Institute of Canada Clinical Trials G (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353(2):123–132. https://doi.org/10.1056/NEJMoa050753

    Article  CAS  PubMed  Google Scholar 

  36. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139. https://doi.org/10.1056/NEJMoa040938

    Article  CAS  PubMed  Google Scholar 

  37. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L, Mardis E, Kupfer D, Wilson R, Kris M, Varmus H (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 101(36):13306–13311. https://doi.org/10.1073/pnas.0405220101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Arrieta O, Anaya P, Morales-Oyarvide V, Ramirez-Tirado LA, Polanco AC (2016) Cost-effectiveness analysis of EGFR mutation testing in patients with non-small cell lung cancer (NSCLC) with gefitinib or carboplatin-paclitaxel. Eur J Health Econ 17(7):855–863. https://doi.org/10.1007/s10198-015-0726-5

    Article  PubMed  Google Scholar 

  39. (2018) Companies scaling back IDO1 inhibitor trials. Cancer Discov 8(7):OF5. https://doi.org/10.1158/2159-8290.CD-ND2018-007

  40. Menis J, Hasan B, Besse B (2014) New clinical research strategies in thoracic oncology: clinical trial design, adaptive, basket and umbrella trials, new end-points and new evaluations of response. Eur Respir Rev 23(133):367–378. https://doi.org/10.1183/09059180.00004214

    Article  PubMed  Google Scholar 

  41. Catenacci DV (2015) Next-generation clinical trials: novel strategies to address the challenge of tumor molecular heterogeneity. Mol Oncol 9(5):967–996. https://doi.org/10.1016/j.molonc.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  42. Herbst RS, Gandara DR, Hirsch FR, Redman MW, LeBlanc M, Mack PC, Schwartz LH, Vokes E, Ramalingam SS, Bradley JD, Sparks D, Zhou Y, Miwa C, Miller VA, Yelensky R, Li Y, Allen JD, Sigal EV, Wholley D, Sigman CC, Blumenthal GM, Malik S, Kelloff GJ, Abrams JS, Blanke CD, Papadimitrakopoulou VA (2015) Lung master protocol (Lung-MAP)-a biomarker-driven protocol for accelerating development of therapies for squamous cell lung cancer: SWOG S1400. Clin Cancer Res 21(7):1514–1524. https://doi.org/10.1158/1078-0432.CCR-13-3473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schwaederle M, Husain H, Fanta PT, Piccioni DE, Kesari S, Schwab RB, Patel SP, Harismendy O, Ikeda M, Parker BA, Kurzrock R (2016) Use of liquid biopsies in clinical oncology: pilot experience in 168 patients. Clin Cancer Res 22(22):5497–5505. https://doi.org/10.1158/1078-0432.CCR-16-0318

    Article  CAS  PubMed  Google Scholar 

  44. Schwaederle MC, Patel SP, Husain H, Ikeda M, Lanman RB, Banks KC, Talasaz A, Bazhenova L, Kurzrock R (2017) Utility of genomic assessment of blood-derived circulating tumor DNA (ctDNA) in patients with advanced lung adenocarcinoma. Clin Cancer Res 23(17):5101–5111. https://doi.org/10.1158/1078-0432.CCR-16-2497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Manem VSK, Salgado R, Aftimos P, Sotiriou C, Haibe-Kains B (2017) Network science in clinical trials: a patient-centered approach. Semin Cancer Biol 52:135–150. https://doi.org/10.1016/j.semcancer.2017.12.006

    Article  PubMed  Google Scholar 

  46. El-Osta H, Shahid K, Mills GM, Peddi P (2016) Immune checkpoint inhibitors: the new frontier in non-small-cell lung cancer treatment. OncoTargets Ther 9:5101–5116. https://doi.org/10.2147/OTT.S111209

    Article  CAS  Google Scholar 

  47. Buder-Bakhaya K, Hassel JC (2018) Biomarkers for clinical benefit of immune checkpoint inhibitor treatment – a review from the melanoma perspective and beyond. Front Immunol 9:1474. https://doi.org/10.3389/fimmu.2018.01474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, Gottfried M, Peled N, Tafreshi A, Cuffe S, O’Brien M, Rao S, Hotta K, Leiby MA, Lubiniecki GM, Shentu Y, Rangwala R, Brahmer JR, Investigators K (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375(19):1823–1833. https://doi.org/10.1056/NEJMoa1606774

    Article  CAS  PubMed  Google Scholar 

  49. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhaufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crino L, Blumenschein GR Jr, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373(17):1627–1639. https://doi.org/10.1056/NEJMoa1507643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D, Ready N, Gainor J, Aren Frontera O, Havel L, Steins M, Garassino MC, Aerts JG, Domine M, Paz-Ares L, Reck M, Baudelet C, Harbison CT, Lestini B, Spigel DR (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2):123–135. https://doi.org/10.1056/NEJMoa1504627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, Majem M, Fidler MJ, de Castro G Jr, Garrido M, Lubiniecki GM, Shentu Y, Im E, Dolled-Filhart M, Garon EB (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387(10027):1540–1550. https://doi.org/10.1016/S0140-6736(15)01281-7

    Article  CAS  PubMed  Google Scholar 

  52. Lemery S, Keegan P, Pazdur R (2017) First FDA approval agnostic of cancer site – when a biomarker defines the indication. N Engl J Med 377(15):1409–1412. https://doi.org/10.1056/NEJMp1709968

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Arrieta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hernandez-Martinez, JM., Sánchez-Reyes, R., De la Garza-Salazar, J.G., Arrieta, O. (2019). Onco-omics Approaches and Applications in Clinical Trials for Cancer Patients. In: Ruiz-Garcia, E., Astudillo-de la Vega, H. (eds) Translational Research and Onco-Omics Applications in the Era of Cancer Personal Genomics. Advances in Experimental Medicine and Biology, vol 1168. Springer, Cham. https://doi.org/10.1007/978-3-030-24100-1_5

Download citation

Publish with us

Policies and ethics