Advertisement

Pharmaco-epigenomics: On the Road of Translation Medicine

  • César López-CamarilloEmail author
  • Dolores Gallardo-Rincón
  • María Elizbeth Álvarez-Sánchez
  • Laurence A. Marchat
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1168)

Abstract

Epigenomics refers to the study of genome-wide changes in epigenetic mechanisms including DNA methylation, histone modifications and non-coding RNAs expression. The alterations in normal DNA methylation and histone acetylation/deacetylation patterns lead to deregulated transcription and chromatin organization resulting in altered gene expression profiles that facilitates tumor development and progression. In consequence, novel therapeutic strategies aimed at reversing aberrant epigenetic marks in cancer cells have been developed and used in recent molecular studies and clinical trials. Pharmaco-epigenomics is a research area, which refers to the study of epigenome changes in cancer development and how chemotherapeutic agents can reverse these aberrant epigenetic marks by targeting the epigenetic machinery. Besides, the effects of genome-wide polymorphisms in populations leading to variations in drug response are also study subject of pharmaco-epigenomics and are being studied extensively in cancer. Recent findings showed that drug response could be largely influenced by the presence of aberrant epigenetic marks of the whole genome. This implies that biological pathways and cellular processes are under the impact of epigenome status. However, data about the relationship between drug response and the epigenomic variations is still scarce mainly because the epigenome is highly variable between individuals. The present chapter reviewed the advances on the epigenetics changes mainly DNA methylation and histones modifications on cervical and breast human cancers. A special emphasis in how they could be used as targets for the development and use of novel drugs in cancer therapy is delineated.

Keywords

Epigenomics DNA methylation Histone modifications Non-coding RNAs Histone acetylation Epigenetic marks Cervical cancer Breast cancer Epigenetic biomarkers Epigenetic therapies 

References

  1. 1.
    Luger K, Dechassa ML, Tremethick DJ (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13:436–447PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Relling MV, Evans WE (2015) Pharmacogenomics in the clinic. Nature 526:343350CrossRefGoogle Scholar
  3. 3.
    Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1:194–202PubMedCrossRefGoogle Scholar
  4. 4.
    Campos EI, Reinberg D (2009) Histones: annotating chromatin. Annu Rev Genet 43:559–599PubMedCrossRefGoogle Scholar
  5. 5.
    Eberharter A, Becker PB (2002) Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 3:224–229PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8:284–295PubMedCrossRefGoogle Scholar
  7. 7.
    Barneda-Zahonero B, Parra M (2012) Histone deacetylases and cancer. Mol Oncol 6:579–589PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ropero S, Esteller M (2007) The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1:19–25PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Ellis L, Atadja PW, Johnstone RW (2009) Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Therapeutics 8:1409–1420CrossRefGoogle Scholar
  11. 11.
    Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28:1057–1068PubMedCrossRefGoogle Scholar
  12. 12.
    Chen T, Li E (2004) Structure and function of eukaryotic DNA methyltransferases. Curr Top Dev Biol 60:55–89PubMedCrossRefGoogle Scholar
  13. 13.
    Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, Golic KG, Jacobsen SE, Bestor TH (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311:395–398PubMedCrossRefGoogle Scholar
  14. 14.
    Lopez-Serra L, Esteller M (2008) Proteins that bind methylated DNA and human cancer: reading the wrong words. Br J Cancer 98:1881–1885PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kuroda A, Rauch TA, Todorov I, Ku HT, Al-Abdullah IH, Kandeel F, Mullen Y, Pfeifer GP, Ferreri K (2009) Insulin gene expression is regulated by DNA methylation. PLoS One 4:e6953PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Thomson JP, Skene PJ, Selfridge J, Clouaire T, Guy J, Webb S, Kerr AR, Deaton A, Andrews R, James KD, Turner DJ, Illingworth R, Bird A (2010) CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464:1082–1086PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159PubMedCrossRefGoogle Scholar
  18. 18.
    Saito Y, Kanai Y, Nakagawa T, Sakamoto M, Saito H, Ishii H, Hirohashi S (2003) Increased protein expression of DNA methyltransferase (DNMT) 1 is significantly correlated with the malignant potential and poor prognosis of human hepatocellular carcinomas. Int J Cancer 105:527–532PubMedCrossRefGoogle Scholar
  19. 19.
    Peng DF, Kanai Y, Sawada M, Ushijima S, Hiraoka N, Kitazawa S, Hirohashi S (2006) DNA methylation of multiple tumor-related genes in association with overexpression of DNA methyltransferase 1 (DNMT1) during multistage carcinogenesis of the pancreas. Carcinogenesis 27:1160–1168PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang W, Xu J (2017) DNA methyltransferases and their roles in tumorigenesis. Biomark Res 5:1PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Taby R, Issa JP (2010) Cancer epigenetics. CA Cancer J Clin 60:376–392PubMedCrossRefGoogle Scholar
  22. 22.
    Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Pérez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400PubMedCrossRefGoogle Scholar
  23. 23.
    Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, Kurdistani SK (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 30:1262–12666CrossRefGoogle Scholar
  24. 24.
    Benard A, Goossens-Beumer IJ, van Hoesel AQ, de Graaf W, Horati H, Putter H, Zeestraten EC, van de Velde CJ, Kuppen PJ (2014) Histone trimethylation at H3K4, H3K9 and H4K20 correlates with patient survival and tumor recurrence in early-stage colon cancer. BMC Cancer 14:531PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC (2005) Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 45:495–528PubMedCrossRefGoogle Scholar
  26. 26.
    Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401:188–193PubMedCrossRefGoogle Scholar
  27. 27.
    Richon VV (2006) Cancer biology: mechanism of antitumour action of vorinostat (suberoylanilide hydroxamic acid), a novel histone deacetylase inhibitor. Br J Cancer 95(Suppl 1):S2–S6PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A 97:10014–10019PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Sakajiri S, Kumagai T, Kawamata N, Saitoh T, Said JW, Koeffler HP (2005) Histone deacetylase inhibitors profoundly decrease proliferation of human lymphoid cancer cell lines. Exp Hematol 33(1):53–61PubMedCrossRefGoogle Scholar
  30. 30.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2012) Global cancer statistics. CA Cancer J Clin 65:87–108CrossRefGoogle Scholar
  31. 31.
    Small W Jr, Bacon MA, Bajaj A, Chuang LT, Fisher BJ, Harkenrider MM, Jhingran A, Kitchener HC, Mileshkin LR, Viswanathan AN, Gaffney DK (2017) Cervical cancer: a global health crisis. Cancer 123:2404–2412PubMedCrossRefGoogle Scholar
  32. 32.
    Woodman CB, Collins SI, Young LS (2007) The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer 7:11–22PubMedCrossRefGoogle Scholar
  33. 33.
    Kim YI, Giuliano A, Hatch KD, Schneider A, Nour MA, Dallal GE, Selhub J, Mason JB (1994) Global DNA hypomethylation increases progressively in cervical dysplasia and carcinoma. Cancer 74:893–899PubMedCrossRefGoogle Scholar
  34. 34.
    de Capoa A, Musolino A, Della Rosa S, Caiafa P, Mariani L, Del Nonno F, Vocaturo A, Donnorso RP, Niveleau A, Grappelli C (2003) DNA demethylation is directly related to tumour progression: evidence in normal, pre-malignant and malignant cells from uterine cervix samples. Oncol Rep 10:545–549PubMedGoogle Scholar
  35. 35.
    Wu Q, Shi H, Suo Z, Nesland JM (2003) 5-CpG island methylation of the FHIT gene is associated with reduced protein expression and higher clinical stage in cervical carcinomas. Ultrastruct Pathol 27:417–422PubMedGoogle Scholar
  36. 36.
    Kitkumthorn N, Yanatatsanajit P, Kiatpongsan S, Phokaew C, Triratanachat S, Trivijitsilp P, Termrungruanglert W, Tresukosol D, Niruthisard S, Mutirangura A (2006) Cyclin A1 promoter hypermethylation in human papillomavirus-associated cervical cancer. BMC Cancer 6:55PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Narayan G, Arias-Pulido H, Koul S, Vargas H, Zhang FF, Villella J, Schneider A, Terry MB, Mansukhani M, Murty VV (2003) Frequent promoter methylation of CDH1, DAPK, RARB, and HIC1 genes in carcinoma of cervix uteri: its relationship to clinical outcome. Mol Cancer 2:24PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kuzmin I, Liu L, Dammann R, Geil L, Stanbridge EJ, Wilczynski SP, Lerman MI, Pfeifer GP (2003) Inactivation of RAS association domain family 1A gene in cervical carcinomas and the role of human papillomavirus infection. Cancer Res 63:1888–1893PubMedGoogle Scholar
  39. 39.
    Ojesina AI, Lichtenstein L, Freeman SS, Pedamallu CS, Imaz-Rosshandler I, Pugh TJ, Cherniack AD, Ambrogio L, Cibulskis K, Bertelsen B, Romero-Cordoba S, Treviño V, Vazquez-Santillan K, Guadarrama AS, Wright AA, Rosenberg MW, Duke F, Kaplan B, Wang R, Nickerson E, Walline HM, Lawrence MS, Stewart C, Carter SL, McKenna A, Rodriguez-Sanchez IP, Espinosa-Castilla M, Woie K, Bjorge L, Wik E, Halle MK, Hoivik EA, Krakstad C, Gabiño NB, Gómez-Macías GS, Valdez-Chapa LD, Garza-Rodríguez ML, Maytorena G, Vazquez J, Rodea C, Cravioto A, Cortes ML, Greulich H, Crum CP, Neuberg DS, Hidalgo-Miranda A, Escareno CR, Akslen LA, Carey TE, Vintermyr OK, Gabriel SB, Barrera-Saldaña HA, Melendez-Zajgla J, Getz G, Salvesen HB, Meyerson M (2014) Landscape of genomic alterations in cervical carcinomas. Nature 506:371–375PubMedCrossRefGoogle Scholar
  40. 40.
    Cancer Genome Atlas Research Network, Albert Einstein College of Medicine, Analytical Biological Services, Barretos Cancer Hospital, Baylor College of Medicine et al (2017) Integrated genomic and molecular characterization of cervical cancer. Nature 543:378–384CrossRefGoogle Scholar
  41. 41.
    Beyer S, Zhu J, Mayr D, Kuhn C, Schulze S, Hofmann S, Dannecker C, Jeschke U, Kost BP (2017) Histone H3 acetyl K9 and histone H3 tri methyl K4 as prognostic markers for patients with cervical cancer. Int J Mol Sci 18:E477PubMedCrossRefGoogle Scholar
  42. 42.
    Liu N, Zhao LJ, Li XP, Wang JL, Chai GL, Wei LH (2012) Histone deacetylase inhibitors inducing human cervical cancer cell apoptosis by decreasing DNAmethyltransferase 3B. Chin Med J 125:3273–3278PubMedGoogle Scholar
  43. 43.
    Li H, Wu X (2004) Histone deacetylase inhibitor, Trichostatin A, activates p21WAF1/CIP1 expression through downregulation of c-myc and release of the repression of c-myc from the promoter in human cervical cancer cells. Biochem Biophys Res Commun 324:860–867PubMedCrossRefGoogle Scholar
  44. 44.
    Szalmás A, Kónya J (2009) Epigenetic alterations in cervical carcinogenesis. Semin Cancer Biol 19:144–152PubMedCrossRefGoogle Scholar
  45. 45.
    Mukherjee N, Kumar AP, Ghosh R (2015) DNA methylation and flavonoids in genitourinary cancers. Curr Pharmacol Rep 1:112–120PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Piyathilake CJ, Badiga S, Kabagambe EK, Azuero A, Alvarez RD, Johanning GL, Partridge EE (2012) A dietary pattern associated with LINE-1 methylation alters the risk of developing cervical intraepithelial neoplasia. Cancer Prev Res (Phila) 5:385–392CrossRefGoogle Scholar
  47. 47.
    Sundaram MK, Ansari MZ, Mutery AA, Ashraf M, Nasab R, Rai S, Rais N, Hussain A (2017) Genistein induces alterations of epigenetic modulatory signatures in human cervical cancer cells. Anti Cancer Agents Med Chem 18:412–421CrossRefGoogle Scholar
  48. 48.
    Ali Khan M, Kedhari Sundaram M, Hamza A, Quraishi U, Gunasekera D, Ramesh L, Goala P, Al Alami U, Ansari MZ, Rizvi TA, Sharma C, Hussain A (2015) Sulforaphane reverses the expression of various tumor suppressor genes by targeting DNMT3B and HDAC1 in human cervical Cancer cells. Evid Based Complement Alternat Med 2015:412149PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Jha AK, Nikbakht M, Parashar G, Shrivastava A, Capalash N, Kaur J (2010) Reversal of hypermethylation and reactivation of the RARβ2 gene by natural compounds in cervical cancer cell lines. Folia Biol (Praha) 56:195–200Google Scholar
  50. 50.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917PubMedCrossRefGoogle Scholar
  51. 51.
    Schnitt SJ (2010) Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy. Mod Pathol 23:S60–S64PubMedCrossRefGoogle Scholar
  52. 52.
    Bernardino J, Roux C, Almeida A, Vogt N, Gibaud A, Gerbault-Seureau M, Magdelenat H, Bourgeois CA, Malfoy B, Dutrillaux B (1997) DNA hypomethylation in breast cancer: an independent parameter of tumor progression? Cancer Genet Cytogenet 97:83–89PubMedCrossRefGoogle Scholar
  53. 53.
    Soares J, Pinto AE, Cunha CV, André S, Barão I, Sousa JM, Cravo M (1999) Global DNA hypomethylation in breast carcinoma: correlation with prognostic factors and tumor progression. Cancer 85:112–118PubMedCrossRefGoogle Scholar
  54. 54.
    Alves G, Tatro A, Fanning T (1996) Differential methylation of human LINE-1 retrotransposons in malignant cells. Gene 176:39–44PubMedCrossRefGoogle Scholar
  55. 55.
    Bera TK, Tsukamoto T, Panda DK, Huang T, Guzman RC, Hwang SI, Nandi S (1998) Defective retrovirus insertion activates c-Ha-ras protooncogene in an MNUinduced rat mammary carcinoma. Biochem Biophys Res Commun 248:835–840PubMedCrossRefGoogle Scholar
  56. 56.
    Guo Y, Pakneshan P, Gladu J, Slack A, Szyf M, Rabbani SA (2002) Regulation of DNA methylation in human breast cancer. Effect on the urokinase-type plasminogen activator gene production and tumor invasion. J Biol Chem 277:41571–41579PubMedCrossRefGoogle Scholar
  57. 57.
    Weber J, Salgaller M, Samid D, Johnson B, Herlyn M, Lassam N, Treisman J, Rosenberg SA (1994) Expression of the MAGE-1 tumor antigen is upregulated by the demethylating agent 5-aza-2′-deoxycytidine. Cancer Res 54:1766–1771PubMedGoogle Scholar
  58. 58.
    Gupta A, Godwin AK, Vanderveer L, Lu A, Liu J (2003) Hypomethylation of the synuclein gamma gene CpG island promotes its aberrant expression in breast carcinoma and ovarian carcinoma. Cancer Res 63:664–673PubMedGoogle Scholar
  59. 59.
    Sharma G, Mirza S, Parshad R, Srivastava A, Datta Gupta S, Pandya P, Ralhan R (2009) CpG hypomethylation of MDR1 gene in tumor and serum of invasive ductal breast carcinoma patients. Clin Biochem 43:373–379PubMedCrossRefGoogle Scholar
  60. 60.
    Locke WJ, Clark SJ (2012) Epigenome remodelling in breast cancer: insights from an early in vitro model of carcinogenesis. Breast Cancer Res 14:215PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Virmani AK, Rathi A, Sathyanarayana UG, Padar A, Huang CX, Cunnigham HT, Farinas AJ, Milchgrub S, Euhus DM, Gilcrease M, Herman J, Minna JD, Gazdar AF (2001) Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clin Cancer Res 7:1998–2004PubMedGoogle Scholar
  62. 62.
    Martinet N, Michel BY, Bertrand P, Benhida R (2012) Small molecules DNA methyltransferases inhibitors. Med Chem Commun 3:263–273CrossRefGoogle Scholar
  63. 63.
    Tao Y, Liu S, Briones V, Geiman TM, Muegge K (2011) Treatment of breast cancer cells with DNA demethylating agents leads to a release of Pol II stalling at genes with DNA-hypermethylated regions upstream of TSS. Nucleic Acids Res 39:9508–9520PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Champion C, Guianvarc’h D, Sénamaud-Beaufort C, Jurkowska RZ, Jeltsch A, Ponger L, Arimondo PB, Guieysse-Peugeot AL (2010) Mechanistic insights on the inhibition of c5 DNA methyltransferases by zebularine. PLoS One 5:e12388PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Chen M, Shabashvili D, Nawab A, Yang SX, Dyer LM, Brown KD, Hollingshead M, Hunter KW, Kaye FJ, Hochwald SN, Marquez VE, Steeg P, Zajac-Kaye M (2012) DNA methyltransferase inhibitor, zebularine, delays tumor growth and induces apoptosis in a genetically engineered mouse model of breast cancer. Mol Cancer Ther 11:370–382PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • César López-Camarillo
    • 1
    Email author
  • Dolores Gallardo-Rincón
    • 2
  • María Elizbeth Álvarez-Sánchez
    • 1
  • Laurence A. Marchat
    • 3
  1. 1.Posgrado en Ciencias GenómicasUniversidad Autónoma de la Ciudad de MéxicoCiudad de MéxicoMexico
  2. 2.Laboratorio de Medicina TranslacionalInstituto Nacional de CancerologíaCiudad de MéxicoMéxico
  3. 3.Programa en Biomedicina Molecular y Red de BiotecnologíaInstituto Politécnico NacionalCiudad de MéxicoMéxico

Personalised recommendations