Advertisement

Realization of FIR Filters

  • Lars WanhammarEmail author
  • Tapio Saramäki
Chapter
  • 162 Downloads

Abstract

In this chapter, we discuss efficient realization of FIR filters. First, we focus on nonrecursive structures with linear-phase response and their realisation using direct form, transposed form, cascade form, and delay-complementary FIR filter pairs. Recursive structures like Lagrange and running-sum structures are also discussed. The realisation cost is here assumed to be minimised by simplifying the multiplications. We propose several variants of difference coefficient structures that yield a structure with only power-of-two coefficients and an adder network. A more efficient method is based on weighted graphs. Finally, we demonstrate a technique to determine a bonding box that limits the ranges of the feasible coefficients. The chapter contains 9 solved examples. Additional materials are available on https://www.springer.com/in/book/9783030240622

References

  1. 1.
    Wanhammar, L.: DSP Integrated Circuits. Academic Press (1999)Google Scholar
  2. 2.
    Crochiere, R.E., Rabiner, L.R.: Multirate Digital Signal Processing. Prentice-Hall, Englewood Cliffs, NJ (1983)CrossRefGoogle Scholar
  3. 3.
    Blad, A., Gustafsson, O.: Integer linear programming-based bit-level optimization for high-speed FIR decimation filter architectures. Circ. Syst. Signal Process. p. 21 (2009)Google Scholar
  4. 4.
    Mitra, S.K., Kaiser, J.F. (eds.): Handbook for Digital Signal Processing. Wiley, New York (1993)Google Scholar
  5. 5.
    Mehrnia, A., Willson, A.N.: Optimal factoring of FIR filters. IEEE Trans. Signal Process.63(3), 647–661 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Mehrnia, A., Willson, A.N.: Further desensitized FIR half-band filters. IEEE Trans. Circ. Syst.62(7), 1815–1924 (2015)Google Scholar
  7. 7.
    Mehrnia, A., Willson, A.N.: A lower bound for the hardware complexity of FIR filters. IEEE Circ. Syst. Mag. 18(1), 10–28 (2018)CrossRefGoogle Scholar
  8. 8.
    Shi, D., Yu. Y.J.: Design of discrete-valued linear phase FIR filters in cascade form. IEEE Trans. Circ. Syst. Part I, 58(7), 1627–1636 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Oh, H.J., Lee, Y.H.: Design of efficient FIR filters with cyclotomic polynomial prefilters using mixed integer linear programming. IEEE Signal Process. Lett. 3(8), 239–241 (1996)CrossRefGoogle Scholar
  10. 10.
    Oh, H.J., Lee, Y.H.: Design of discrete coefficient FIR and IIR digital filters with prefilter-equalizer structure using linear programming. IEEE Trans. Circ. Syst. Part II 47(6), 562–565 (2000)CrossRefGoogle Scholar
  11. 11.
    Willson, A.N.: Desensitized half-band filters. IEEE Trans. Circ. Syst. Part I 57(1), 152–165 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fliege N.J.: Multirate Digital Signal Processing. Wiley, New York (1994)Google Scholar
  13. 13.
    Bellanger, M.: Digital Processing of Signals, 3rd edn. Wiley, Chichester, England (2000)zbMATHGoogle Scholar
  14. 14.
    Mitra, S.K.: Digital Signal Processing: A Computer Based Approach. McGraw-Hill (2006)Google Scholar
  15. 15.
    Proakis, J.G., Manolakis, D.G.: Digital Signal Processing, Principles, Algorithms, and Applications, 3rd edn, Prentice Hall (1996)Google Scholar
  16. 16.
    Ingle, V.K., Proakis, J.G.: Digital Signal Processing Using MATLAB. Brooks/Cole Publ. (2000)Google Scholar
  17. 17.
    Oppenheim, A.V., Mecklenbrauker, W.F.G., Mersereau, R.M.: Variable cutoff linear phase digital filters. IEEE Trans. Circ. Syst. 23(4), 199–203 (1976)CrossRefGoogle Scholar
  18. 18.
    Chen, C.H. (ed.): Signal Processing Handbook. Marcel Dekker, New York (1988)Google Scholar
  19. 19.
    Saramäki, T.: Design of FIR filters as a tapped cascade interconnection of identical sub-filters. IEEE Trans. Circ. Syst. 34(9), 1011–1029 (1987)CrossRefGoogle Scholar
  20. 20.
    DeFatta, D.J., Lucas, J.G., Hodgkiss, W.S.: Digital Signal Processing: A System Design Approach. Wiley, New York (1988)Google Scholar
  21. 21.
    Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Prentice-Hall (1989)Google Scholar
  22. 22.
    Rabiner, L.R., Gold, B.: Theory and Application of Digital Signal Processing. Prentice Hall, Englewood Cliffs, NJ (1975)Google Scholar
  23. 23.
    Taylor, F.J.: Digital Filter Design Handbook. Marcel Dekker, New York (1983)Google Scholar
  24. 24.
    Hogenauer, E.B.: An economical class of digital filters for decimation and interpolation. IEEE Trans. Acoustics Speech Signal Process. 29, 155–162 (1981)CrossRefGoogle Scholar
  25. 25.
    Harris, F.J.: Multirate Signal Processing For Communication Systems. Prentice Hall (2004)Google Scholar
  26. 26.
    Tan, N., Eriksson, S., Wanhammar, L.: A power saving technique for bit- serial DSP ASICs. In: Proceedings of IEEE International Symposium on Circuits and Systems, ISCAS-94, vol. 4, pp. 4.51–4.54, London (1994)Google Scholar
  27. 27.
    Eghbali, A., Gustafsson, O., Johansson, H., Löwenborg, P.: On the complexity of multiplierless direct and polyphase FIR filter structures. In: Proceedings of the International Symposium Image, Signal Processing, Analysis, pp. 200–205, Istanbul, Turkey (2007)Google Scholar
  28. 28.
    Parhi, K.K.: VLSI Digital Signal Processing Systems, Design and Implementation. Wiley, New York (1999)Google Scholar
  29. 29.
    Parker, D.A., Parhi, K.K.: Low-area/power parallel FIR digital filter implementation. J. VLSI Signal Process. 17, 75–92 (1997)CrossRefGoogle Scholar
  30. 30.
    Tsao, Y.C., Choi, K.: Hardware-efficient parallel FIR digital filter structures for symmetric convolutions. In: IEEE International Symposium on Circuits and Systems, ISCAS-11, pp. 2301–2304, Rio de Janeiro, Brazil (2011)Google Scholar
  31. 31.
    Gustafsson, O., Wanhammar, L.: Design of reduced complexity linear- phase polyphase FIR filters using mixed integer linear programming, pp. 13–14. Swedish System-on-Chip Conf, Båstad, Sweden (2004)Google Scholar
  32. 32.
    Shahein, A., Zhang, Q., Lotze, N., Manoli, Y.: A novel hybrid monotonic local search algorithm for FIR filter coefficients optimization. In: IEEE Transactions on Circles and Systems, Part I, vol. 59, No. 3, pp. 616–627 (2012)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Ramprasad, S., Shanbhag, N.R., Hajj, I.N.: Decorrelating (DECOR) transformations for low-power digital filters. In: IEEE Transactions on Circuits and Systems, Part I, vol. 46, No. 6, pp. 776–788 (1999)CrossRefGoogle Scholar
  34. 34.
    Nakayama, K.: Permuted difference coefficient realization of FIR digital filters. In: IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 30, no. 2, pp. 269–278 (1982)CrossRefGoogle Scholar
  35. 35.
    Ohlsson, H., Gustafsson, O., Wanhammar, L.: Implementation of low-complexity FIR filters using difference methods, pp. 13–14. Swedish System-on-Chip Conf, Båstad, Sweden (2004)Google Scholar
  36. 36.
    Ohlsson, H., Gustafsson, O., Wanhammar, L.: A shifted permuted difference coefficient method. In: IEEE International Symposium on Circuits and Systems, vol. 3, pp. 161–164, Vancouver, Canada ( 2004)Google Scholar
  37. 37.
    Lawler, E.S.: Combinatorial Optimization: Networks and Matriods. Dover Publications (2001)Google Scholar
  38. 38.
    Gustafsson, O., Wanhammar, L.: A novel approach to multiple constant multiplication using minimum spanning trees. In: Proceedings of the IEEE Midwest Symposium Circuits Systems, vol. 3, pp. 652–655, Tulsa, OK (2002)Google Scholar
  39. 39.
    Muhammad, K., Roy, K.: A graph theoretic approach for synthesizing very low-complexity high-speed digital filters. IEEE Trans. Comput. Aided Des. 21(2), 204–216 (2002)CrossRefGoogle Scholar
  40. 40.
    Ohlsson, H., Gustafsson, O., Wanhammar, L.: Implementation of low complexity FIR filters using a minimum spanning tree. In: IEEE Mediterranean Electrotechnical Conference, vol. 1, pp. 261–264, Dubrovnik, Croatia (2004)Google Scholar
  41. 41.
    Abo-Zahhad, M., Henk, T.: Design of selective lowpass sampled-data and digital filters exhibiting equiripple amplitude and phase error characteristics. Int. J. Circ. Theor. Appl. 23(1), 59–74 (1995)CrossRefGoogle Scholar
  42. 42.
    Allen, P.E., Sanchez-Sinencio, E.: Switched Capacitor Circuits. van Nostrand Reinhold, New York (1984)CrossRefGoogle Scholar
  43. 43.
    Anzova, V.I., Yli-Kaakinen, J., Saramäki, T.: An algorithm for the design of multiplierless IIR filters as a parallel connection of two all-pass filters. In: Proceedings of IEEE Asia Pacific Conference on Circuits and Systems APCCAS, pp. 744–747, Singapore (2006)Google Scholar
  44. 44.
    Baher, H.: Synthesis of Electrical Networks. Wiley, New York (1984)Google Scholar
  45. 45.
    Abbas, M., Qureshi, F., Sheikh, Z., Gustafsson, O., Johansson, H., Johansson, K.: Comparison of multiplierless implementation of nonlinear-phase versus linear-phase FIR filters. In: Asilomar Conference Signals System Computing, pp. 598–601, Pacific Grove, CA (2008)Google Scholar
  46. 46.
    FIRsuite. Suite of constant coefficient FIR filters (2011). http://www.firsuite.net/
  47. 47.
    Lou, X., Meher, P.K., Yu, Y., Ye, W.: Novel structure for area-efficient implementation of FIR filters. IEEE Trans. Circ. Syst. Part II 64(10), 1212–1217 (2017)CrossRefGoogle Scholar
  48. 48.
    Elliott, D.F. (ed.): Handbook of Digital Signal Processing. Academic Press, Engineering Applications (1988)Google Scholar
  49. 49.
    Chen, C.-L., Willson, A.N.: A trellis search algorithm for design of FIR filters with signed-power-of-two coefficients. IEEE Trans. Circ. Syst. Part I 46(1), 29–39 (1999)Google Scholar
  50. 50.
    Davidson, T.N.: Enriching the art of FIR filter design via convex optimization. IEEE Signal Process. Mag. 27(3), 89–101 (2010)CrossRefGoogle Scholar
  51. 51.
    Gustafsson, O., Johansson H., Wanhammar, L.: An MILP approach for the design of linear-phase FIR filters with minimum number of signed-power-of-two terms. In: Proceedings of European Conference Circuit Theory Design, pp. 28–31, Espoo, Finland (2001)Google Scholar
  52. 52.
    Gustafsson, O., Johansson, H., Wanhammar, L.: MILP design of frequency-response masking FIR filters with few SPT terms. In: International Symposium Control Communication Signal Processing, pp. 405–408, Hammamet, Tunisia (2004)Google Scholar
  53. 53.
    Niedringhaus, W.P., Steiglitz, K., Kodek, D.: An easily computed performance bound for finite wordlength direct-form FIR filters. IEEE Trans. Circ. Syst. 29(3), 191–193 (1982)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Linköping UniversityLinköpingSweden
  2. 2.Tampere University of TechnologyTampereFinland

Personalised recommendations