Realization of FIR Filters

  • Lars WanhammarEmail author
  • Tapio Saramäki


In this chapter, we discuss efficient realization of FIR filters. First, we focus on nonrecursive structures with linear-phase response and their realisation using direct form, transposed form, cascade form, and delay-complementary FIR filter pairs. Recursive structures like Lagrange and running-sum structures are also discussed. The realisation cost is here assumed to be minimised by simplifying the multiplications. We propose several variants of difference coefficient structures that yield a structure with only power-of-two coefficients and an adder network. A more efficient method is based on weighted graphs. Finally, we demonstrate a technique to determine a bonding box that limits the ranges of the feasible coefficients. The chapter contains 9 solved examples. Additional materials are available on


  1. 1.
    Wanhammar, L.: DSP Integrated Circuits. Academic Press (1999)Google Scholar
  2. 2.
    Crochiere, R.E., Rabiner, L.R.: Multirate Digital Signal Processing. Prentice-Hall, Englewood Cliffs, NJ (1983)CrossRefGoogle Scholar
  3. 3.
    Blad, A., Gustafsson, O.: Integer linear programming-based bit-level optimization for high-speed FIR decimation filter architectures. Circ. Syst. Signal Process. p. 21 (2009)Google Scholar
  4. 4.
    Mitra, S.K., Kaiser, J.F. (eds.): Handbook for Digital Signal Processing. Wiley, New York (1993)Google Scholar
  5. 5.
    Mehrnia, A., Willson, A.N.: Optimal factoring of FIR filters. IEEE Trans. Signal Process.63(3), 647–661 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Mehrnia, A., Willson, A.N.: Further desensitized FIR half-band filters. IEEE Trans. Circ. Syst.62(7), 1815–1924 (2015)Google Scholar
  7. 7.
    Mehrnia, A., Willson, A.N.: A lower bound for the hardware complexity of FIR filters. IEEE Circ. Syst. Mag. 18(1), 10–28 (2018)CrossRefGoogle Scholar
  8. 8.
    Shi, D., Yu. Y.J.: Design of discrete-valued linear phase FIR filters in cascade form. IEEE Trans. Circ. Syst. Part I, 58(7), 1627–1636 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Oh, H.J., Lee, Y.H.: Design of efficient FIR filters with cyclotomic polynomial prefilters using mixed integer linear programming. IEEE Signal Process. Lett. 3(8), 239–241 (1996)CrossRefGoogle Scholar
  10. 10.
    Oh, H.J., Lee, Y.H.: Design of discrete coefficient FIR and IIR digital filters with prefilter-equalizer structure using linear programming. IEEE Trans. Circ. Syst. Part II 47(6), 562–565 (2000)CrossRefGoogle Scholar
  11. 11.
    Willson, A.N.: Desensitized half-band filters. IEEE Trans. Circ. Syst. Part I 57(1), 152–165 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fliege N.J.: Multirate Digital Signal Processing. Wiley, New York (1994)Google Scholar
  13. 13.
    Bellanger, M.: Digital Processing of Signals, 3rd edn. Wiley, Chichester, England (2000)zbMATHGoogle Scholar
  14. 14.
    Mitra, S.K.: Digital Signal Processing: A Computer Based Approach. McGraw-Hill (2006)Google Scholar
  15. 15.
    Proakis, J.G., Manolakis, D.G.: Digital Signal Processing, Principles, Algorithms, and Applications, 3rd edn, Prentice Hall (1996)Google Scholar
  16. 16.
    Ingle, V.K., Proakis, J.G.: Digital Signal Processing Using MATLAB. Brooks/Cole Publ. (2000)Google Scholar
  17. 17.
    Oppenheim, A.V., Mecklenbrauker, W.F.G., Mersereau, R.M.: Variable cutoff linear phase digital filters. IEEE Trans. Circ. Syst. 23(4), 199–203 (1976)CrossRefGoogle Scholar
  18. 18.
    Chen, C.H. (ed.): Signal Processing Handbook. Marcel Dekker, New York (1988)Google Scholar
  19. 19.
    Saramäki, T.: Design of FIR filters as a tapped cascade interconnection of identical sub-filters. IEEE Trans. Circ. Syst. 34(9), 1011–1029 (1987)CrossRefGoogle Scholar
  20. 20.
    DeFatta, D.J., Lucas, J.G., Hodgkiss, W.S.: Digital Signal Processing: A System Design Approach. Wiley, New York (1988)Google Scholar
  21. 21.
    Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Prentice-Hall (1989)Google Scholar
  22. 22.
    Rabiner, L.R., Gold, B.: Theory and Application of Digital Signal Processing. Prentice Hall, Englewood Cliffs, NJ (1975)Google Scholar
  23. 23.
    Taylor, F.J.: Digital Filter Design Handbook. Marcel Dekker, New York (1983)Google Scholar
  24. 24.
    Hogenauer, E.B.: An economical class of digital filters for decimation and interpolation. IEEE Trans. Acoustics Speech Signal Process. 29, 155–162 (1981)CrossRefGoogle Scholar
  25. 25.
    Harris, F.J.: Multirate Signal Processing For Communication Systems. Prentice Hall (2004)Google Scholar
  26. 26.
    Tan, N., Eriksson, S., Wanhammar, L.: A power saving technique for bit- serial DSP ASICs. In: Proceedings of IEEE International Symposium on Circuits and Systems, ISCAS-94, vol. 4, pp. 4.51–4.54, London (1994)Google Scholar
  27. 27.
    Eghbali, A., Gustafsson, O., Johansson, H., Löwenborg, P.: On the complexity of multiplierless direct and polyphase FIR filter structures. In: Proceedings of the International Symposium Image, Signal Processing, Analysis, pp. 200–205, Istanbul, Turkey (2007)Google Scholar
  28. 28.
    Parhi, K.K.: VLSI Digital Signal Processing Systems, Design and Implementation. Wiley, New York (1999)Google Scholar
  29. 29.
    Parker, D.A., Parhi, K.K.: Low-area/power parallel FIR digital filter implementation. J. VLSI Signal Process. 17, 75–92 (1997)CrossRefGoogle Scholar
  30. 30.
    Tsao, Y.C., Choi, K.: Hardware-efficient parallel FIR digital filter structures for symmetric convolutions. In: IEEE International Symposium on Circuits and Systems, ISCAS-11, pp. 2301–2304, Rio de Janeiro, Brazil (2011)Google Scholar
  31. 31.
    Gustafsson, O., Wanhammar, L.: Design of reduced complexity linear- phase polyphase FIR filters using mixed integer linear programming, pp. 13–14. Swedish System-on-Chip Conf, Båstad, Sweden (2004)Google Scholar
  32. 32.
    Shahein, A., Zhang, Q., Lotze, N., Manoli, Y.: A novel hybrid monotonic local search algorithm for FIR filter coefficients optimization. In: IEEE Transactions on Circles and Systems, Part I, vol. 59, No. 3, pp. 616–627 (2012)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Ramprasad, S., Shanbhag, N.R., Hajj, I.N.: Decorrelating (DECOR) transformations for low-power digital filters. In: IEEE Transactions on Circuits and Systems, Part I, vol. 46, No. 6, pp. 776–788 (1999)CrossRefGoogle Scholar
  34. 34.
    Nakayama, K.: Permuted difference coefficient realization of FIR digital filters. In: IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 30, no. 2, pp. 269–278 (1982)CrossRefGoogle Scholar
  35. 35.
    Ohlsson, H., Gustafsson, O., Wanhammar, L.: Implementation of low-complexity FIR filters using difference methods, pp. 13–14. Swedish System-on-Chip Conf, Båstad, Sweden (2004)Google Scholar
  36. 36.
    Ohlsson, H., Gustafsson, O., Wanhammar, L.: A shifted permuted difference coefficient method. In: IEEE International Symposium on Circuits and Systems, vol. 3, pp. 161–164, Vancouver, Canada ( 2004)Google Scholar
  37. 37.
    Lawler, E.S.: Combinatorial Optimization: Networks and Matriods. Dover Publications (2001)Google Scholar
  38. 38.
    Gustafsson, O., Wanhammar, L.: A novel approach to multiple constant multiplication using minimum spanning trees. In: Proceedings of the IEEE Midwest Symposium Circuits Systems, vol. 3, pp. 652–655, Tulsa, OK (2002)Google Scholar
  39. 39.
    Muhammad, K., Roy, K.: A graph theoretic approach for synthesizing very low-complexity high-speed digital filters. IEEE Trans. Comput. Aided Des. 21(2), 204–216 (2002)CrossRefGoogle Scholar
  40. 40.
    Ohlsson, H., Gustafsson, O., Wanhammar, L.: Implementation of low complexity FIR filters using a minimum spanning tree. In: IEEE Mediterranean Electrotechnical Conference, vol. 1, pp. 261–264, Dubrovnik, Croatia (2004)Google Scholar
  41. 41.
    Abo-Zahhad, M., Henk, T.: Design of selective lowpass sampled-data and digital filters exhibiting equiripple amplitude and phase error characteristics. Int. J. Circ. Theor. Appl. 23(1), 59–74 (1995)CrossRefGoogle Scholar
  42. 42.
    Allen, P.E., Sanchez-Sinencio, E.: Switched Capacitor Circuits. van Nostrand Reinhold, New York (1984)CrossRefGoogle Scholar
  43. 43.
    Anzova, V.I., Yli-Kaakinen, J., Saramäki, T.: An algorithm for the design of multiplierless IIR filters as a parallel connection of two all-pass filters. In: Proceedings of IEEE Asia Pacific Conference on Circuits and Systems APCCAS, pp. 744–747, Singapore (2006)Google Scholar
  44. 44.
    Baher, H.: Synthesis of Electrical Networks. Wiley, New York (1984)Google Scholar
  45. 45.
    Abbas, M., Qureshi, F., Sheikh, Z., Gustafsson, O., Johansson, H., Johansson, K.: Comparison of multiplierless implementation of nonlinear-phase versus linear-phase FIR filters. In: Asilomar Conference Signals System Computing, pp. 598–601, Pacific Grove, CA (2008)Google Scholar
  46. 46.
    FIRsuite. Suite of constant coefficient FIR filters (2011).
  47. 47.
    Lou, X., Meher, P.K., Yu, Y., Ye, W.: Novel structure for area-efficient implementation of FIR filters. IEEE Trans. Circ. Syst. Part II 64(10), 1212–1217 (2017)CrossRefGoogle Scholar
  48. 48.
    Elliott, D.F. (ed.): Handbook of Digital Signal Processing. Academic Press, Engineering Applications (1988)Google Scholar
  49. 49.
    Chen, C.-L., Willson, A.N.: A trellis search algorithm for design of FIR filters with signed-power-of-two coefficients. IEEE Trans. Circ. Syst. Part I 46(1), 29–39 (1999)Google Scholar
  50. 50.
    Davidson, T.N.: Enriching the art of FIR filter design via convex optimization. IEEE Signal Process. Mag. 27(3), 89–101 (2010)CrossRefGoogle Scholar
  51. 51.
    Gustafsson, O., Johansson H., Wanhammar, L.: An MILP approach for the design of linear-phase FIR filters with minimum number of signed-power-of-two terms. In: Proceedings of European Conference Circuit Theory Design, pp. 28–31, Espoo, Finland (2001)Google Scholar
  52. 52.
    Gustafsson, O., Johansson, H., Wanhammar, L.: MILP design of frequency-response masking FIR filters with few SPT terms. In: International Symposium Control Communication Signal Processing, pp. 405–408, Hammamet, Tunisia (2004)Google Scholar
  53. 53.
    Niedringhaus, W.P., Steiglitz, K., Kodek, D.: An easily computed performance bound for finite wordlength direct-form FIR filters. IEEE Trans. Circ. Syst. 29(3), 191–193 (1982)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Linköping UniversityLinköpingSweden
  2. 2.Tampere University of TechnologyTampereFinland

Personalised recommendations