Advertisement

Synthesis of FIR Filters

  • Lars WanhammarEmail author
  • Tapio Saramäki
Chapter
  • 173 Downloads

Abstract

In this chapter, we discuss the design of digital filters with finite-length impulse response using windowing and more important using iterative optimisation, i.e., mini-max design of linear-phase as well as nonlinear-phase filters, e.g., special cases as minimum-phase, half-band and Nyquist FIR filters, differentiators and Hilbert transformers. We discuss concepts like zero-phase response, delay- and allpass-complementary filter pairs, which have reduced realisation cost. Finally, we demonstrated the design of FIR filters with a least squares approximation using linear programming and quadratic programming. The chapter contains 27 solved examples.

References

  1. 1.
    Elliott, D.F. (ed.): Handbook of Digital Signal Processing. Academic Press, Engineering Applications (1988)Google Scholar
  2. 2.
    Proakis, J.G., Manolakis D.G.: Digital Signal Processing, Principles, Algorithms, and Applications, Third edn, Prentice Hall (1996)Google Scholar
  3. 3.
    Rabiner, L.R., Gold, B.: Theory and Application of Digital Signal Processing. Prentice Hall, Englewood Cliffs, N.J. (1975)Google Scholar
  4. 4.
    Fliege, N.J.: Multirate Digital Signal Processing. Wiley (1994)Google Scholar
  5. 5.
    Ramstad, A.T.: Digital two-rate IIR and hybrid IIR/FIR filters for sampling rate conversion. IEEE Trans. Commun. 30(7), 1466–1476 (1982)CrossRefGoogle Scholar
  6. 6.
    Ramstad, A.T.: Digital methods for conversion between arbitrary sampling frequencies. IEEE Trans. Acoust. Speech, Signal Process. 32(3), 577–591 (1984)CrossRefGoogle Scholar
  7. 7.
    Ramstad, A.T., Saramäki, T.: Efficient multirate FIR filter structures for narrow transition band FIR filters. In: IEEE International Symposium on Circuits and Systems, ISCAS-88, Espoo, Finland, Vol. 3, pp. 2019–2022 (1988)Google Scholar
  8. 8.
    Ramstad, T.A., Saramäki, T.: Multistage, multirate FIR filter structures for narrow transition-band filters. On: IEEE International Symposium on Circuits and Systems, ISCAS-90, Vol. 3, pp. 2017–2021, New Orleans, LA, 1–3 May 1990Google Scholar
  9. 9.
    McClellan, J.H., Parks, T.W., Rabiner, L.R.: A computer program for designing optimum FIR linear phase digital filters. IEEE Trans Audio Electroacoust. 21(6), 506–526 (1973)CrossRefGoogle Scholar
  10. 10.
    Bellanger, M.: Digital Processing of Signals, 3rd edn. John Wiley & Sons, Chichester, England (2000)zbMATHGoogle Scholar
  11. 11.
    DeFatta, D.J., Lucas, J.G., Hodgkiss, W.S.: Digital Signal Processing: a System Design Approach. Wiley (1988)Google Scholar
  12. 12.
    Ingle, V.K., Proakis, J.G.: Digital Signal Processing Using MATLAB. Brooks/Cole Publ. (2000)Google Scholar
  13. 13.
    Mitra, S.K., Kaiser, J.F. (eds.): Handbook for Digital Signal Processing. Wiley (1993)Google Scholar
  14. 14.
    Taylor, F.J.: Digital Filter Design Handbook. Marcel Dekker, New York (1983)Google Scholar
  15. 15.
    Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66(1), 51–83 (1978)CrossRefGoogle Scholar
  16. 16.
    Mitra, S.K.: Digital Signal Processing. McGraw-Hill, A Computer Based Approach (2006)Google Scholar
  17. 17.
    Hamming, R.W.: Digital Filters. Prentice-Hall, Englewood Cliffs, N.J. (1977)Google Scholar
  18. 18.
    Kaiser, J.F.: Nonrecursive digital filter design using I0-sinh window function. In: Proceedings of the IEEE International Symposium on Circuits and Systems, ISCAS´74, pp. 20–23 (1974)Google Scholar
  19. 19.
    Ifeachor, E.C., Jervis, B.W.: Digital Signal Processing, A Practical Approach. Addison-Wesley (2002)Google Scholar
  20. 20.
  21. 21.
    Herrmann, O., Rabiner, R.L., Chan, D.S.K.: Practical design rules for optimum finite impulse response digital filters. Bell Tech. J. 52(6), 769–799 (1973)CrossRefGoogle Scholar
  22. 22.
    MATLAB: Signal Processing Toolbox. http://se.mathworks.com/help/signal/
  23. 23.
    Ichige, K., Iwaki, M., Ishii, R.: Accurate estimation of minimum filter length for optimum FIR digital filters. IEEE Trans. Circuits Syst. Part II 47(10), 1008–1016 (2000)CrossRefGoogle Scholar
  24. 24.
    Mintzer, F., Liu, B.: Practical design rule for optimum FIR bandpass digital filters. IEEE Trans. Acoust. Speech, Signal Process. 27(2), 204–206 (1979)CrossRefGoogle Scholar
  25. 25.
    Ahsan, M., Saramäki, T.: A MATLAB based optimum multibands FIR filters design program following the original idea of the Remez multiple exchange algorithm. IEEE International Symposium on Circuits and Systems, ISCAS-11, Rio de Janeiro, Brazil, pp. 137–140, 15–18 May 2011Google Scholar
  26. 26.
    Parks, T.W., McClellan, J.H.: A program for design of linear phase finite impulse response digital filters. IEEE Trans. Audio Electroacoust. 20(3), 195–199 (1972)CrossRefGoogle Scholar
  27. 27.
    Antoniou, A.: Digital Filters, Analysis, Design and Applications, 2nd Edn. McGraw-Hill (1993)Google Scholar
  28. 28.
    Chen, C.H. (ed.): Signal Processing Handbook. Marcel Dekker, New York (1988)Google Scholar
  29. 29.
    Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Prentice-Hall (1989)Google Scholar
  30. 30.
    Parks, T.W., Burrus, C.S.: Digital Filter Design. Wiley (1987)Google Scholar
  31. 31.
    Zahradnik, P., Vlcek, M.: Fast analytical design algorithms for FIR notch filters. IEEE Trans. Circuits Syst. Part I 51(3), 608–623 (2004)CrossRefGoogle Scholar
  32. 32.
    Zahradnik, P., Vlcek, M.: Note on the design of an equiripple DC-notch FIR filter. IEEE Trans. Circuits Syst. Part II 54(2) (2007)CrossRefGoogle Scholar
  33. 33.
    Ansari, R.: Satisfying the Haar condition in halfband FIR filter design. IEEE Trans. Acoust. Speech, Signal Process. 36(1), 123–124 (1988)CrossRefGoogle Scholar
  34. 34.
    Vaidyanathan, P.P., Nguyen, T.Q.: A ‘trick’ for design of FIR half-band filters. IEEE Trans. Circuits Syst. 34(3), 297–300 (1987)CrossRefGoogle Scholar
  35. 35.
    MATLAB.: Filter Design Toolbox User’s Guide. The MathWorks (2001)Google Scholar
  36. 36.
    Willson, A.N., Orchard, H.J.: A design method for half-band FIR filters. IEEE Trans. Circuits Syst. Part I 45(1), 95–101 (1999)zbMATHCrossRefGoogle Scholar
  37. 37.
    Johansson, H., Saramäki, T.: A class of complementary IIR filters. IEEE International Symposium on Circuits and Systems, ISCAS-99, Vol. 3, pp. 299–302, May 30–June 2 1999Google Scholar
  38. 38.
    Milić, L., Saramäki, T.: Three classes of IIR complementary filter pairs with an adjustable cossover frequency. In: Proceedings of the IEEE International Symposium Circuits Systems ISCAS-03, Vol. 4, pp. 145–148 (2003)Google Scholar
  39. 39.
    Milić, L., Saramäki, T.: Power-complementary IIR filter pairs with an adjustable crossover frequency. Elecron. Energ. (Facta Universitatis Series) 16(3), 295–304 (2003)Google Scholar
  40. 40.
    Madisetti, V.K., Williams, D.B.: The Digital Signal Processing Handbook. CRC Press, New York (1998)Google Scholar
  41. 41.
    Koilpillai, R.D., Vaidyanathan, P.P.: A spectral factorization approach to pseudo-QMF design. IEEE Trans. Signal Process. 41(1), 82–92 (1993)zbMATHCrossRefGoogle Scholar
  42. 42.
    Mian, G., Nainer, A.: A fast procedure to design equiripple minimum-phase FIR filter. IEEE Trans. Circuits Syst. 29(5), 327–331 (1982)CrossRefGoogle Scholar
  43. 43.
    Sheikh, Z.U., Eghbali, A., Johansson, H.: Linear-phase FIR digital differentiator order estimation. In: Proceedings of the 20th European Conference on Circuit Theory and Design, ECCTD, pp. 310–313, Linköping, Sweden (2011)Google Scholar
  44. 44.
    Abbas, M., Qureshi, F., Sheikh, Z., Gustafsson, O., Johansson, H., Johansson, K.: Comparison of multiplierless implementation of nonlinear-phase versus linear-phase FIR filters. In: Asilomar Conference on Signals, Systems and Computers, pp. 598–601, Pacific Grove, CA, 26–29 Oct 2008Google Scholar
  45. 45.
    Herrmann, O., Schüssler, H.W.: Design of nonrecursive digital filters with minimum phase. Electron. Lett. 6(11), 329–330 (1970)CrossRefGoogle Scholar
  46. 46.
    Lim, J.E., Oppenheim, A.V. (eds.): Advanced Topics in Signal Processing. Prentice-Hall, Englewood Cliffs, N.J. (1988)zbMATHGoogle Scholar
  47. 47.
    Chit, N.N., Mason, J.S.: Design of minimum phase FIR digital filters. In: Proceedings of the IEE G, Electronic Circuits Systems, (UK), Vol. 135, No. 6, pp. 258–264 (1988)CrossRefGoogle Scholar
  48. 48.
    Chen, C.H. (ed.): The Circuits and Filters Handbook, 2nd edn. CRC Press, New York (2002)Google Scholar
  49. 49.
    Le-Bihan, J.: Maximally linear FIR digital differentiators. Circuits Syst. Signal Process. 14(5), 633–637 (1995)zbMATHCrossRefGoogle Scholar
  50. 50.
    Vaidyanathan, P.P., Nguyen, T.Q.: Eigenfilters: A new approach to least squares FIR filter design and applications including Nyquist filters. IEEE Trans. Circuits Syst. 34(1), 11–23 (1987)CrossRefGoogle Scholar
  51. 51.
    Pei, S.-C., Shyu, J.-J.: Design of FIR Hilbert transformers and differentiators by eigenfilter. IEEE Trans. Circuits Syst. 35(11), 1457–1461 (1988)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Selesnick, I.W.: Maximally flat low-pass digital differentiators. IEEE Trans. Circuits Syst. Part II 49(3), 219–223 (2002)CrossRefGoogle Scholar
  53. 53.
    Selesnick, I.W., Burrus, C.S.: Exchange algorithms for the design of linear phase FIR filters and differentiators having flat monotonic passbands and equiripple stopbands. IEEE Trans. Circuits Syst. Part II 43(9), 671–675 (1996). http://www.ece.rice.edu/dsp/software/fir.shtmlCrossRefGoogle Scholar
  54. 54.
    Hahn, S.L.: Hilbert Transforms in Signal Processing. Artech House Books (1997)Google Scholar
  55. 55.
    Burrus, C.S.: Multiband least squares FIR filter design. IEEE Trans. Signal Process. 43(2), 412–421 (1995)MathSciNetCrossRefGoogle Scholar
  56. 56.
    MATLAB.: Optimization Toolbox User’s Guide. http://uk.mathworks.com/help/ pdf_doc/optim/optim_tb.pdf
  57. 57.
    Foulds, L.R.: Optimization Techniques: an Introduction. Springer-Verlag, New York (1981)zbMATHCrossRefGoogle Scholar
  58. 58.
    Nash, S.G., Sofer, A.: Linear and Nonlinear Programming. McGraw-Hill (1996)Google Scholar
  59. 59.
    Herrmann, O.: On the approximation problem in nonrecursive digital filter design. IEEE Trans. Circuit Theory 18(3), 411–413 (1971)CrossRefGoogle Scholar
  60. 60.
    Fettweis, A.: A simple design of maximally flat delay digital filters. IEEE Trans. Acoustics Speech Signal Process. 20(2), 112–114 (1972)CrossRefGoogle Scholar
  61. 61.
    Gopinath, R.A.: Lowpass delay filters with flat magnitude and group delay constraints. IEEE Trans. Signal Process. 51(1), 182–192 (2003)CrossRefGoogle Scholar
  62. 62.
    Vaidyanathan, P.P.: Optimal design of linear-phase FIR digital filters with very flat passbands and equiripple stopbands. IEEE Trans. Circuits Syst. 32, 904–916 (1985)CrossRefGoogle Scholar
  63. 63.
    Saramäki, T., Renfors, M.: A novel approach for the design of IIR filters as a tapped cascaded interconnection of identical allpass subfilters. IEEE International Symposium on Circuits and Systems, ISCAS-87, Vol. 2, pp. 629–632, Philadelphia, 4–7 May 1987Google Scholar
  64. 64.
    Saramäki, T.: Design of FIR filters as a tapped cascade interconnection of identical sub-filters. IEEE Trans. Circuits Syst. 34(9), 1011–1029 (1987)CrossRefGoogle Scholar
  65. 65.
    Vaidyanathan, P.P.: Efficient and multiplier-less design of FIR filters with very sharp cutoff via maximally flat building blocks. IEEE Trans. Circuits Syst. 32(3), 236–244 (1985)CrossRefGoogle Scholar
  66. 66.
    Chao, H.-C., Lin, C.-S., Chieu, B.-C.: Minimax design of FIR all-pass filters. IEEE Trans. Circuits Syst. Part II 47(6), 576–580 (2000)CrossRefGoogle Scholar
  67. 67.
    Chen, C.-K., Lee, J.-H.: Design of digital all-pass filters using a weighted least squares approach. IEEE Trans. Circuits Syst. Part II 41(5), 346–351 (1994)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Linköping UniversityLinköpingSweden
  2. 2.Tampere University of TechnologyTampereFinland

Personalised recommendations