Implementation of Digital Filters

  • Lars WanhammarEmail author
  • Tapio Saramäki


In this chapter, we discuss techniques to map filter algorithms to digital hardware that are suitable for an implementation using FPGA (Field-Programmable Gate Array) or cell-based integrated circuits. Particularly, we discuss architectures for implementations using bit-serial arithmetic and distributed arithmetic and how to obtain maximally fast implementation. The chapter contains 10 examples. The additional materials are available on


  1. 1.
    Gustafsson, O., Wanhammar, L.: Arithmetic. In: Bhattacharyya, S.S., Deprettere, E.F, Leupers, R., Takala, J. (eds.) Handbook of Signal Processing Systems, Part II. Springer (2010)Google Scholar
  2. 2.
    Wanhammar, L.: DSP Integrated Circuits. Academic Press (1999)Google Scholar
  3. 3.
    Lipovski, G.J.: Architecture of a simple, effective control processor. In: Second Symposium on Micro Architecture, pp. 187–194. Euromicro (1976)Google Scholar
  4. 4.
    Lipovski, G.J., Chen, C.P.: On conditional moves in control processes. In: Proceedings of 2nd Rocky Mountain Symposium on Microcomputers: systems, Software, Architecture, pp. 63–94, USA (1978)Google Scholar
  5. 5.
    Azaria, H., Tabak, D.: Design consideration of a single instruction microcomputer—a case study. Microprocessors Microprog. 1, 187–194 (1983)CrossRefGoogle Scholar
  6. 6.
    Corporaal, H., Mulder, H.J.M.: MOVE: a framework for high-performance processor design. In: Proceedings of Supercomputing, vol. 91, pp. 692–701, USA (1991)Google Scholar
  7. 7.
    Tabak, D., Lipovski, G.J.: Move architecture in digital controllers. IEEE Trans. Comput. C-29(2), 180–189 (1980)CrossRefGoogle Scholar
  8. 8.
    Lyon, R.F.: Two’s complement pipeline multipliers. IEEE Trans. Commun. 24(4), 418–424 (1976)CrossRefGoogle Scholar
  9. 9.
    Chang, Y.-N., Satyanarayana, J.H., Parhi, K.K.: Systematic design of high- speed and low-power digit-serial multipliers. IEEE Trans. Circuits Syst II 45(12), 1585–1596 (1998)CrossRefGoogle Scholar
  10. 10.
    Gustafsson, O., Wanhammar, L.: Bit-level pipelinable general and fixed coefficient digit-serial/parallel multipliers based on shift-accumulation. In: International Conference on Electronics Circuits Systems, pp. 15–18, Dubrovnik, Croatia (2002)Google Scholar
  11. 11.
    Nibouche, O., Bouridane, A., Nibouche, M., Crookes, D.: A new pipelined digit-serial multiplier. In: Proceedings of IEEE International Symposium Circuits Systems, vol. 1, pp. 12–15, Geneva, Switzerland, 28–31 May 2000Google Scholar
  12. 12.
    Meher, P.K., Stouraitis, T. (eds.): Mehendale, M., Sharma, M., Meher, P.K.: DA-Based Circuits for Inner-Product Computation, Chapter 3 in Arithmetic Circuits for DSP Applications, Wiley-IEEE Press (2017)Google Scholar
  13. 13.
    Croisier, A., Esteban, D.J., Levilion, M.E., Rizo, V.: Digital Filter for PCM Encoded Signals, U.S. Patent 3777130, 4 Dec 1973Google Scholar
  14. 14.
    Peled, A., Liu, B.: A new hardware realization of digital filters. IEEE Trans. Acoust. Speech, Signal Processing, ASSP 22(6), 456–462 (1974)CrossRefGoogle Scholar
  15. 15.
    Sikström, B., Wanhammar, L.: A shift-accumulator for signal processing applications. In: Proceedings of 1981 European Conference on Circuit Theory and Design, ECCTD-81, pp. 919–924, The Hague, The Netherlands (1981)Google Scholar
  16. 16.
    De Man, H.J., Vandenbulcke, C.J., van Cappellen, M.M.: A high-speed NMOS circuits for ROM-accumulator and multiplier type digital filters. IEEE J. Solid-State Circuits SC 13(5), 565–572 (1978)CrossRefGoogle Scholar
  17. 17.
    Büttner, M., Schüßler, H.W.: On structures for the implementation of the distributed arithmetic. Nachrichtentechn. Z. 29(6), 472–477 (1976)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Linköping UniversityLinköpingSweden
  2. 2.Tampere University of TechnologyTampereFinland

Personalised recommendations