Advertisement

Frequency-Response Masking Filters

  • Lars WanhammarEmail author
  • Tapio Saramäki
Chapter
  • 140 Downloads

Abstract

In this chapter, we focus on filters that are required to have very small transition bandwidth. The filter order, as well as the number of nontrivial coefficients of a direct form FIR filter, is inversely proportional to the transition bandwidth. Therefore, FIR filters with small transition bandwidth suffer from high arithmetic complexity due to the high filter orders.

References

  1. 1.
    Lim, Y.C.: Frequency-response masking approach for the synthesis of sharp linear phase digital filters. IEEE Trans. Circuits Syst. CAS-33(4), 357–364 (1986)Google Scholar
  2. 2.
    Wanhammar, L., Yu, Y.J.: Digital filter structures and their implementation. In: Academic Press Library in Signal Processing: Signal Processing Theory and Machine Learning, vol. 1, Chapter 6 (2013)Google Scholar
  3. 3.
    Johansson, H.: New classes of frequency-response masking FIR filters. In: IEEE International Symposium on Circuits and Systems, vol. 3, pp. 81–84, Geneva, Switzerland, 28–31 May 2000Google Scholar
  4. 4.
    Saramäki, T., Lim, Y.C., Yang, R.: The synthesis of half-band filter using frequency-response masking technique. IEEE Trans. Circuits Syst. Part II 42(1), 58–60 (1995)CrossRefGoogle Scholar
  5. 5.
    Lim, Y.C., Yu, Y.J.: Synthesis of very sharp Hilbert transformer using the frequency-response masking technique. IEEE Trans. Signal Process. 53(7), 2595–2597 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Milić, L., Certic, J.D., Lutovac, M.: A class of FRM-based all-pass digital filters with applications in half-band filters and Hilbert transformers. In: ICGCS Conference on Green Circuits and Systems (2010)Google Scholar
  7. 7.
    Lim, Y.C., Yang, R.: On the synthesis of very sharp decimators and interpolators using the frequency-response masking technique. IEEE Trans. Signal Process. 53(4), 1387–1397 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Johansson, H., Saramäki, T.: Two-channel FIR filter banks utilizing the frequency-response masking approach. Circuits Syst. Signal Process. 22(2), 157–192 (2003)Google Scholar
  9. 9.
    Diniz, P.S.R., de Barcellos, L.C.R., Netto, S.L.: Design of high-resolution cosine-modulated transmultiplexers with sharp transition band. IEEE Trans. Signal Process. 52(5), 1278–1288 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lim, Y.C., Lian, Y.: The optimum design of one- and two-dimensional FIR filters using the frequency-response masking technique. IEEE Trans. Circuits and Syst. Part II 40(2), 88–95 (1993)CrossRefGoogle Scholar
  11. 11.
    Neuvo, Y., Cheng-Yu, D., Mitra, S.K.: Interpolated finite impulse response filters. IEEE Trans. Acoust. Speech Signal Process. 32(3), 563–570 (1984)CrossRefGoogle Scholar
  12. 12.
    Saramäki, T., Neuvo, Y., Mitra, S.K.: Design of computationally efficient interpolated FIR filters. IEEE Trans. Circuits Syst. 35(1), 70–88 (1988)CrossRefGoogle Scholar
  13. 13.
    Lim, Y.C., Lian, Y.: Frequency-response masking approach for digital filter design: complexity reduction via masking filter factorization. IEEE Trans. Circuits Syst. Part II 41, 518–525 (1994)CrossRefGoogle Scholar
  14. 14.
    Mitra, S.K., Kaiser, J.F. (eds.): Handbook for Digital Signal Processing. Wiley (1993)Google Scholar
  15. 15.
    Johansson, H., Wanhammar, L.: A filter structure based on the frequency-response masking approach for high-speed recursive filtering. In: IEEE Nordic Signal Processing Symposium, NORSIG-98, Denmark, pp. 165–168, 8–11 June 1998Google Scholar
  16. 16.
    Gustafsson, O., DeBrunner, L.S., DeBrunner, V., Johansson, H.: On the design of sparse half-band like FIR filters. In: Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, pp. 1098–1102, 4–7 Nov 2007Google Scholar
  17. 17.
    Sheikh, Z.U., Gustafsson, O.: Design of narrow-band and wide-band frequency response masking filters using sparse non-periodic sub-filters. In: European Signal Processing Conference, pp. 1704–1707, Aalborg, Denmark, 23–27 Aug 2010Google Scholar
  18. 18.
    Sheikh, Z.U., Gustafsson, O., Wanhammar, L.: Design of sparse non-periodic narrow-band and wide-band FRM-like FIR filters. In: IEEE International Conference on Green Circuits and Systems, pp. 279–282, Shanghai, China, 21–23 June 2010Google Scholar
  19. 19.
    Ichige, K., Iwaki, M., Ishii, R.: Accurate estimation of minimum filter length for optimum FIR digital filters. IEEE Trans. Circuits Syst. Part II 47(10), 1008–1016 (2000)CrossRefGoogle Scholar
  20. 20.
    Johansson, H., Wanhammar, L.: High-speed recursive filtering using the frequency response masking approach. In: IEEE International Symposium on Circuits and Systems, ISCAS-97, vol. IV, pp. 2208–2211, Hong Kong, 9–12 June 1997Google Scholar
  21. 21.
    Johansson, H., Wanhammar, L.: High-speed recursive digital filters based on the frequency-response masking approach. IEEE Trans. Circuits Syst. Part II 47(1), 48–61 (2000)CrossRefGoogle Scholar
  22. 22.
    Saramäki, T., Johansson, H.: Optimization of FIR filters using the frequency-response masking approach. In: Proceedings of the IEEE International Symposium on Circuits and Systems, vol. 2, pp. 177–180, Sydney, Australia, 6–9 May 2001Google Scholar
  23. 23.
    Yli-Kaakinen, J., Saramäki, T.: An efficient algorithm for the optimization of FIR filters synthesized using the multistage frequency-response approach. Circuits Syst. Signal Process. 30(1), 157–183 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Yli-Kaakinen, J., Saramäki, T., Yu, Y.J.: An efficient algorithm for the optimization of FIR filters synthesized using the multistage frequency-response approach. In: IEEE International Symposium on Circuits and Systems, vol. 5, pp. 540–543, Vancouver, Canada, 23–26 May 2004Google Scholar
  25. 25.
    Gustafsson, O., Johansson, H., Wanhammar, L.: Single filter frequency response masking FIR filters. J. Circuits Syst. Comput. 12(5), 601–630 (2003)CrossRefGoogle Scholar
  26. 26.
    Lian, Y., Yang, C.Z.: Complexity reduction by decoupling the masking filters from the bandedge shaping filter in the FRM technique. Circuits Syst. Signal Process. 22(2), 115–135 (2003)zbMATHGoogle Scholar
  27. 27.
    Svensson, L., Johansson, H.: Frequency-response masking FIR filters with short delay. In: Proceedings of the IEEE International Symposium on Circuits and Systems, vol. 3, pp. 233–236, Phoenix, USA, 26–29 May 2002Google Scholar
  28. 28.
    Gustafsson, O., Johansson, H., Wanhammar, L.: MILP design of frequency-response masking FIR filters with few SPT terms. In: International Symposium on Control, Communications, Signal Processing, Hammamet, Tunisia, pp. 405–408, 21–24 March 2004Google Scholar
  29. 29.
    Gustafsson, O., Johansson, H.: Complexity comparison of linear-phase half- band and general FIR filters. In: Proceedings of the IEEE Asia-Pacific Conference on Circuits and Systems, Singapore, 4–7 Dec 2006Google Scholar
  30. 30.
    Lim, Y.C., Yu, Y.J., Saramäki, T.: Optimum masking levels and coefficient sparseness for Hilbert transformers and half-band filters designed using the frequency-response masking technique. IEEE Trans. Circuits Syst. Part I 52(11), 2444–2453 (2005)Google Scholar
  31. 31.
    Chandrakasan, A.P., Brodersen, R.W.: Low Power Digital CMOS Design. Kluwer (1995)Google Scholar
  32. 32.
    Johansson, H., Wanhammar, L.: Wave digital filter structures for high-speed narrow-band and wide-band filtering. IEEE Trans. Circuits Syst. Part II 6(6), 726–741 (1999)CrossRefGoogle Scholar
  33. 33.
    Johansson, H.: Synthesis and Realization of High-Speed Recursive Digital Filters. Linköping Studies in Science and Technology, Diss. No. 534, Linköping University, Sweden, May 1998Google Scholar
  34. 34.
    Johansson, H., Wanhammar, L.: A digital filter structure composed of allpass filters and an FIR filter for wideband filtering. In: Fourth IEEE International Conference on Electronics, Circuits, and Systems, ICECS-97, vol. 1, pp. 249–253, Cairo, Egypt, 15–18 Dec 1997Google Scholar
  35. 35.
    Johansson, H.: A class of high-speed approximately linear-phase recursive digital filters based on the frequency-response masking approach. In: Midwest Symposium on Circuits Systems, vol. 1, pp. 397–400, Las Cruces, New Mexico, USA, Aug 1999Google Scholar
  36. 36.
    Johansson, H., Wanhammar, L.: High-speed wide-band lattice wave digital filters. IEEE Nordic Signal Processing Symposium, NORSIG-96, pp. 355–358, Espoo, Finland, Sept 1996Google Scholar
  37. 37.
    Johansson, H., Wanhammar, L.: High-speed narrow-band lattice wave digital filters. In: Third IEEE International Conference on Electronics, Circuits, and Systems, ICECS-96, vol. 1, pp. 390–393, Rhodos, Greece, 10–13 Oct 1996Google Scholar
  38. 38.
    Johansson, H., Wanhammar, L.: Filter structures composed of allpass and FIR filters for interpolation and decimation by a factor of two. IEEE Trans. Circuits Syst. Part II 6(7), 896–905 (1999)CrossRefGoogle Scholar
  39. 39.
    Ramstad, T.A., Saramäki, T.: Multistage, multirate FIR filter structures for narrow transition-band filters. In: IEEE International Symposium on Circuits and Systems, ISCAS-90, vol. 3, pp. 2017–2021, New Orleans, LA, 1–3 May 1990Google Scholar
  40. 40.
    Wanhammar, L.: DSP Integrated Circuits. Academic Press, 1999Google Scholar
  41. 41.
    Gustafsson, O., Johansson, H., Wanhammar, L.: Narrow-band and wide- band single filter frequency masking FIR filters. In: Proc. IEEE International Symposium on Circuits and Systems, pp. 181–184, Sydney, Australia, 6–9 May 2001Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Linköping UniversityLinköpingSweden
  2. 2.Tampere University of TechnologyTampereFinland

Personalised recommendations