Advertisement

Wave Digital Filters

  • Lars WanhammarEmail author
  • Tapio Saramäki
Chapter
  • 138 Downloads

Abstract

Wave digital filters are derived from a wave description of an analog filter with distributed circuit elements. A wave description allow us to define a pseudo-power concept in the z-domain. If the analog filter is designed using the maximum power transfer concept, then the wave digital filter will inherit the sensitivity properties and it also lead to techniques to suppress parasitic oscillations. We furthermore discuss basic building blocks and basic resonance circuits and their wave digital counterparts.

References

  1. 1.
    Fettweis, A.: Digital filter structures related to classical filter networks. Archiv fur Elektronik und Übertragungstechnik 25(2), 79–89 (1971)Google Scholar
  2. 2.
    Fettweis, A.: Some principles of designing digital filters imitating classical filter structures. IEEE Trans. Circuit Theory 18(2), 314–316 (1971)CrossRefGoogle Scholar
  3. 3.
    Fettweis, A.: Wave digital filters: theory and practice. Proc. IEEE 74(2), 270–327 (1986)CrossRefGoogle Scholar
  4. 4.
    Nossek, J.A., Ivrlac, M.T.: On the relation of circuit theory and signals, systems and communications. In: IEEE International Symposium on Circuits and Systems, ISCAS-11, Rio de Janeiro, Brazil, pp. 603–604, 15–18 May 2011Google Scholar
  5. 5.
    Kubin, G.: Wave digital filters: voltage, current, or power waves? In: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-85, vol. 10, pp. 69–72 (1985)Google Scholar
  6. 6.
    Wanhammar, L.: Analog filters using MATLAB. Springer (2009)Google Scholar
  7. 7.
    Eswaran, C., Fettweis, A.: Realization of generalized wave digital filters using adaptors. Archiv fur Elektronik und Übertragungstechnik, AEÜ 32(7), 285–295 (1978)Google Scholar
  8. 8.
    Fettweis, A., Meerkötter, K.: On adaptors for wave digital filters. In: IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 23, no. 6, pp. 516–525 (1975)CrossRefGoogle Scholar
  9. 9.
    Jarmasz, M.R., Martens, G.O.: Design of canonic wave digital filters using Brune and matched 4-port adaptors. IEEE Trans. Circuits Syst. 34(5), 480–495 (1987)CrossRefGoogle Scholar
  10. 10.
    Gazsi, L.: Explicit formulas for lattice wave digital filters. IEEE Trans. Circuits Syst. 32(1), 68–88 (1985)CrossRefGoogle Scholar
  11. 11.
    Ohlsson, H., Gustafsson, O., Wanhammar, L.: Arithmetic transformations for increased maximal sample rate of bit-parallel bireciprocal lattice wave digital filters. In: Proceedings of the IEEE International Symposium on Circuits and Systems, Sydney, Australia, 6–9 May 2001Google Scholar
  12. 12.
    Anderson, M.S., Summerfield, S., Lawson, S.S.: Realization of lattice wave digital filters using three-port adaptors. Electron. Lett. 31(8), 628–629 (1995)CrossRefGoogle Scholar
  13. 13.
    Johansson, H., Wanhammar, L.: Wave digital filter structures for high-speed narrow-band and wide-band filtering. IEEE Trans. Circuits Syst Part II 6(6), 726–741 (1999)CrossRefGoogle Scholar
  14. 14.
    Ohlsson, H., Gustafsson, O., Johansson, H., Wanhammar, L.: Implementation of bit-parallel wave digital filters with increased maximal sample rate. In: Proceedings of the IEEE International Conference on Electronics, Circuits and Systems, Malta, pp. 71–74, 6–9 Septemper 2001Google Scholar
  15. 15.
    Fettweis, A., Meerkötter, K.: Suppression of parasitic oscillations in wave digital filters. In: IEEE International Symposium on Circuits and Systems, ISCAS-74, San Francisco, pp. 682–686 (1974)Google Scholar
  16. 16.
    Fettweis, A., Meerkötter, K.: Suppression of parasitic oscillations in wave digital filters. IEEE Trans. Circuits Syst. 22(3), 239–246 (1975)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Fettweis, A., Meerkötter, K.: Suppression of parasitic oscillations in half-synchronic wave digital filters. IEEE Trans. Circuits Syst. 23(2), 125–126 (1976)CrossRefGoogle Scholar
  18. 18.
    Fettweis, A., Meerkötter, K.: On parasitic oscillations in digital filters under looped conditions. IEEE Trans. Circuits Syst. 24(9), 475–481 (1977)CrossRefGoogle Scholar
  19. 19.
    Meerkötter K.: On the passivity of wave digital networks. IEEE Circuits Syst. Mag. 18(4), 40–57 (2018)CrossRefGoogle Scholar
  20. 20.
    Fettweis, A.: Passivity and losslessness in digital filtering. Archiv fur Elektronik und Übertragungstechnik, AEÜ 42(1), 1–8 (1988)Google Scholar
  21. 21.
    Fettweis, A.: Pseudopassivity, sensitivity, and stability of wave digital filters. IEEE Trans. Circuit Theory 19(6), 668–673 (1972)CrossRefGoogle Scholar
  22. 22.
    Fettweis, A.: Modified wave digital filters for improved implementation by commercial digital signal processors. Sig. Process. 16(3), 193–207 (1989)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Locioni, G.: Alternative method to magnitude truncation in wave digital filters. IEEE Trans. Circuits Syst. 34(1), 106–107 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Linköping UniversityLinköpingSweden
  2. 2.Tampere University of TechnologyTampereFinland

Personalised recommendations