Advertisement

A Comprehensive Survey on Strategies in Multicore Architectures, Design Considerations and Challenges

  • R. Radhika
  • N. Anusha
  • R. Manimegalai
Conference paper
  • 45 Downloads

Abstract

CMOS technology in contemporary period is enhanced with advanced features and compatible storage system. Advanced CMOS technology provides functional density, increased performance, reduced power, etc. System-on-chip (SoC) technology provides a path for continual improvement in performance, power, cost, and size at the system level in contrast with the conventional CMOS scaling. When a single processor is transformed into multicore processor, it faces a lot of hazards to confine the circuits into single chip. To emphasize the importance of multicore architecture, this paper provides a comprehensive survey on multicore architectures designs, constraints, and practical issues.

Keywords

System-on-chip Multicore Cache coherence Memory system Parallel and distributed architecture Tile-based architecture 

Abbreviations

ALU

Arithmetic logic unit

CMOS

Complementary metal oxide semiconductor

CPU

Central processing unit

DSP

Digital signal processing

FPOA

Field-programmable object array

FPU

Floating point unit

I/O

Input/output

IC

Integrated circuit

IMAP

Integrated memory array processor

KB

Kilobyte

MAC

Multiply-accumulate

NoC

Network-on-chip

PE

Processing element

RAM

Random access memory

RISC

Reduced instruction set computer

ROM

Read-only memory

SoC

System-on-chip

VLIW

Very long instruction word

References

  1. 1.
    Mohanty RP, Turuk AK, Sahoo B (2012) Analysing the performance of multi-core architecture. 1st International conference on Computing, Communication and Sensor Networks-CCSN, pp 1–6Google Scholar
  2. 2.
    Das B, Mahato AK, Khan AK (2013) Architecture and implementation issues of multicore processors and caching–a survey. Int J Res Eng Technol 2(2):78–82Google Scholar
  3. 3.
    Keung A, Rabaey JM (1995) A 2.4 GOPS data-driven reconfigurable multiprocessor IC for DSP. IEEE International conference on solid-state circuits, pp 108–110Google Scholar
  4. 4.
    Rixner S, Dally WJ, Kapasi UJ, Khailany B, Lopez Laguns A, Mattson P, Owens JD (1998) A bandwidth-efficient architecture for media processing. IEEE international symposium on microarchitecture (MICRO), pp 3–13Google Scholar
  5. 5.
    Khailany B, Dally WJ, Chang A, Kapasi UJ, Namkoong J, Towles B (2002) VLSI design and verification of the imagine processor. IEEE International conference on computer design, pp 289–294Google Scholar
  6. 6.
    Hammond L, Hubbert B, Siu M, Prabhu M, Chen M, Olukotun K (2000) The stanford hydra CMP. IEEE J Micro Archit 20(2):71–84CrossRefGoogle Scholar
  7. 7.
    Kyo S, Koga T, Okazaki S, Uchida R, Yoshimoto S, Kuroda I (2003) A 51.2 GOPS scalable video recognition processor for intelligent cruise control based on a linear array of 128 4-way VLIW processing elements. IEEE International conference on solid-state circuits, pp 48–49Google Scholar
  8. 8.
    Carlstrom J, Nordmark G, Roos J, Boden T, Svensson L, Westlund P (2004) A 40Gb/s network processor with RISC dataflow architecture. IEEE International conference on Solid-state circuits, pp 60–61Google Scholar
  9. 9.
    Swanson S, Michelson K, Schwerin A, Oskin M (2003) Wavescalar. IEEE international symposium On microarchitecture (MICRO), pp 291–302Google Scholar
  10. 10.
    Jones AM, Butts M (2006) TeraOPS hardware: a new massively-parallel MIMD computing fabric integrated circuit. In: Proceedings of IEEE hotchips symposium, pp 59–66Google Scholar
  11. 11.
    Pham D, Asano S, Bolliger M, Day MN, Hofstee HP, Johns C, Kahle J, Kameyama A, Keaty J, Masubuchi Y, Riley M, Shippy D, Stasiak D, Suzuoki M, Wang M, Warnock J, Weitzel S, Wendel D, Yamazaki T, Yazawa K (2005) The design and implementation of a first generation cell processor. IEEE international conference on solid-state circuits, pp 184–185Google Scholar
  12. 12.
    Intellasys Seaforth-24B Embedded array processor, technical report. http://www.intellasys.net/
  13. 13.
    Waingold E, Taylor M, Srikrishna D, Sarkar V, Lee W, Lee V, Kim J, Frank M, Finch P, Barua R, Babb J, Amarasinghe S, Agarwal A (1997) Baring it all to software: raw machines. IEEE J Comp Soc 30(9):86–93CrossRefGoogle Scholar
  14. 14.
    Mai K, Paaske T, Jayasena N, Ho R, Dally WJ, Horowitz M (2000) Smart memories: a modular reconfigurable architecture. International symposium on computer architecture, pp 161–171Google Scholar
  15. 15.
    Oliver J, Rao R, Franklin D, Chong FT, Akella V (2005) Synchroscalar: evaluation of an embedded, multi-core architecture for media applications. J Embed Syst Spec Issue Multi-Core Archit:1–16Google Scholar
  16. 16.
    Zhang H, Prabhu V, George V, Wan M, Benes M, Abnous A, Rabaey JM (2000) A1-V heterogeneous reconfigurable DSP IC for wireless baseband digital signal processing. IEEE J Solid State Circuits (JSSC) 35(11):1697–1704CrossRefGoogle Scholar
  17. 17.
    Schmit H, Whelihan D, Moe M, Levine B, Taylor RR (2002) PipeRench: a virtualized programmable datapath in 0.18 micron technology. IEEE Custom Integrated Circuits Conference (CICC), pp 63–66Google Scholar
  18. 18.
    Baines R, Pulley D (2003) A Total cost approach to evaluating different reconfigurable architectures for baseband processing in wireless receivers. IEEE Commun Mag 41(1):105–113CrossRefGoogle Scholar
  19. 19.
    Cronquist DC, Franklin P, Fisher C, Figuerar M, Ebeling C (1999) Architecture design of re-configurable pipelined datapaths, Conference on Advanced Research in VLSI, pp 23–40Google Scholar
  20. 20.
    Xanthopoulos T, Chandrakasan AP (2000) A low-power DCT core using adaptive bit width and arithmetic activity exploiting signal correlations and Quantization. IEEE J Solid State Circuit 35(5):740–750CrossRefGoogle Scholar
  21. 21.
    Vangal S, Howard J, Ruhl G, Dighe S, Wilson H, Tschanz J, Finan D, Lyer P, Singh A, Jacb T, Jain S, Venkataraman S, Hoskote Y, Borkar N (2007) An 80-tile 1.28 TFLOPS network on-chip in 65nm CMOS. IEEE International conference on solid-state circuits, pp 98–99Google Scholar
  22. 22.
    Kasapaki E, Schoeberl M, Sørensen RB, Müller C, Goossens K, Sparso J (2015) Argo: a real-time network-on-chip architecture with an efficient GALS implementation. IEEE transactions on very large scale integration systems, pp 1–14Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • R. Radhika
    • 1
  • N. Anusha
    • 2
  • R. Manimegalai
    • 3
  1. 1.St. Peter’s College of Engineering and TechnologyChennaiIndia
  2. 2.S.A. Engineering CollegeChennaiIndia
  3. 3.Department of Information TechnologyPSG College of TechnologyCoimbatoreIndia

Personalised recommendations