Advertisement

Harmonic Intensity Reduction Technique for Three Phase VSI Drive through Double Randomness

  • P. Arulkumar
  • K. Jaiganesh
  • N. P. Subramaniam
Conference paper
  • 45 Downloads

Abstract

Deterministic Pulse Width Modulation (PWM) methods are popular in industrial applications due to merits. However, the randomized PWM (RPWM) with its cleaner harmonic spectrum is gaining interest for industrial applications required to meet electromagnetic compatibility standards with almost all the earlier merits retained. The proposed Harmonic Intensity Reduction Double Randomness PWM (HIRDRPWM) technique is a hybrid RPWM, which attains the randomness in two ways. The first one is, in the pre-pulse generation stage, through the chaotic frequency generator, which generates a random frequency carrier (triangular) wave. Second randomness is, in post-pulse generation stage, by varying the position of the pulse. The competence in spreading the harmonic power of sinusoidal PWM (SPWM) and the HIRDRPWM is compared using simulation. The distribution of harmonic power in the output voltage of VSI with induction motor load is studied using the MATLAB software. The discussion includes Total Harmonic Distortion (THD) in output line voltage and the Harmonic Spread Factor (HSF).

Keywords

Harmonic Intensity Reduction Double Randomness Pulse Width Modulation (HIRDRPWM) Harmonic Spread Factor (HSF) 

Abbreviation

ASD

Adjustable-speed drive

CCSPWM

Chaotic carrier sinusoidal PWM

EMI

Electromagnetic interference

HIRDRPWM

Harmonic intensity reduction double randomness PWM

HSF

Harmonic spread factor

PRBS

Pseudorandom binary sequence

PSD

Power spectral density

PWM

Pulse width modulation

RPWM

Random pulse width modulation

SPWM

Sinusoidal PWM

THD

Total harmonic distortion

VSI

Voltage source inverter

References

  1. 1.
    Chiasson J, Tolbert LM, McKenzie K, Du Z (2004) A complete solution to the harmonic elimination problem. IEEE Trans Power Electron 19(2):491–499CrossRefGoogle Scholar
  2. 2.
    Mohan N, Undeland TM, Robbins WP (1995) Power electronics: converters, applications, and design, 2nd edn. Wiley, New YorkGoogle Scholar
  3. 3.
    Holtz J (1992) Pulse width modulation–a survey. IEEE Trans Ind Electron 39(5):410–420CrossRefGoogle Scholar
  4. 4.
    Van Der Broeck HW, Skudelny HC, Stanke GV (1988) Analysis and realization of a pulse-width-modulator based on voltage space vectors. IEEE Trans Ind Appl 24:142–150CrossRefGoogle Scholar
  5. 5.
    Iqbal A, Ahmed SM, Khan MA, Abu-Rub H (2010) Generalised simulation and experimental implementation of space vector PWM technique of a three-phase voltage source inverter. Int J Eng Sci Technol 2(1):1–12Google Scholar
  6. 6.
    Solomon OR, Famouri P (2006) A novel approach for evaluating performance of discontinuous pulse width modulation schemes for three-phase voltage source inverter. In: The proceedings of IEEE conference (ISIE 2006), July 2006, Montreal, Quebec, Canada, pp 9–12Google Scholar
  7. 7.
    Houlds Worth JA, Grant DA (1984) The use harmonic distortion to increase the output voltage of three-phase PWM inverter. IEEE Trans Ind Appl 1 IA-20:1224–1228CrossRefGoogle Scholar
  8. 8.
    Ziogas PD (1981) The delta modulation technique in static PWM inverters. IEEE Trans Ind Appl 1A-17:199–203CrossRefGoogle Scholar
  9. 9.
    Lynn Kirlin R, Kwok S, Legowski S, Trzynadlowski AM (1994) Power spectra of a PWM inverter with randomized pulse position. IEEE Trans Power Electron 9(5):463–472CrossRefGoogle Scholar
  10. 10.
    Das S, Narayanan G (2012) Noval switching sequences for a space-vector-modulated three-level inverter. IEEE Trans Ind Electron 59(3):1477–1487CrossRefGoogle Scholar
  11. 11.
    Khan H, Miliani E-H, Drissi KEK (2012) Discontinuous random space vector modulation for electric drives: a digital approach. IEEE Trans Power Electron 27(12):4944–4951CrossRefGoogle Scholar
  12. 12.
    Mathe L, Lungeanu F, Sera D, Rasmussen PO, Pedersen JK (2012) Spread Spectrum modulation by using asymmetric-carrier random PWM. IEEE Trans Ind Electron 59(10):3710–3718CrossRefGoogle Scholar
  13. 13.
    Kim K-S, Jung Y-G, Lim Y-C (2009) A new hybrid random PWM scheme. IEEE Trans Power Electron 24(1):192–200CrossRefGoogle Scholar
  14. 14.
    Kirlin RL, Kwok S, Legowski S, Trzynadlowski AM (1994) Power spectra of a PWM inverter with randomized pulse position. IEEE Trans Power Electron 9(5):463–472CrossRefGoogle Scholar
  15. 15.
    Shrivastava Y, Sathiakumar S, (Ron) Hui SY (1998) Improved spectral performance of random PWM schemes with weighted switching decision. IEEE Trans Power Electron 13(6):1038–1045CrossRefGoogle Scholar
  16. 16.
    Tanaka T, Ninomiya T, Harada K (1989) Random-switching control in DC-to-DC converters. IEEE PESC Rec 1:500–507Google Scholar
  17. 17.
    Legowski S, Bei J, Trzynadlowski AM (1992) Analysis and implementation of a grey-noise PWM technique based on voltage space vectors. In: Proceedings of IEEE international applied power electronics conference (APEC-1992), pp 586–593Google Scholar
  18. 18.
    Arulkumar P, Subramaniam NP (2015) Chaotic triangular carrier based non-deterministic SPWM strategy for voltage source inverter drives. Indian J Sci Technol 8(9):842–848CrossRefGoogle Scholar
  19. 19.
    Arulkumar P, Ravichandran M, Subramaniam NP (2015) Analysis of FPGA based non- deterministic PWM in induction motor drives. Int J Appl Eng Res 10(4):10441–10452Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • P. Arulkumar
    • 1
  • K. Jaiganesh
    • 2
  • N. P. Subramaniam
    • 3
  1. 1.Balaji Institute of Technology and ScienceNarsampet, WarangalIndia
  2. 2.Vardhaman College of EngineeringHyderabadIndia
  3. 3.Pondicherry Engineering CollegePuducherryIndia

Personalised recommendations