Heat Islands

  • Zuzana Poórová
  • Zuzana Vranayová


The aim of the chapter Heat Islands is to provide the reader basic information about this ongoing problematic. Description, causes, terminology, history. The chapter is a continuation of a previous one – Climate Change Is Not a Threat of Future, It Is Already Happening Now, but in a smaller scale. The chapter presents reasons and the causes of creating heat islands in specific areas. In the end, possibilities how to beat heat island are listed. The chapter explains theoretically, how roofing materials, paving materials and trees and vegetation may cause the change. Again, with the focus on a green roofs.


Cooling Green roof Heat island Humidity Paving materials Roofing materials Suburban Temperature Tree Urban Vegetation 


  1. Akbari H, Bretz S, Hanford J, Rosenfeld A, Silor D, Taha H, Bow W (1992) Monitoring peak power and cooling energy savings of shade trees and white surfaces in the Sacramento municipal utility district service area: project design and preliminary results. Lawrence Berkeley National Laboratory, Berkeley, pp 229Google Scholar
  2. Arnfield AJ (1990) Canyon geometry, the urban fabric and nocturnal cooling: a simulation approach. Phys Geogr 11(3):220–239CrossRefGoogle Scholar
  3. Asaeda T, Ca VT, Wake A (1996) Heat storage of pavement and its effect on the lower atmosphere. Atmos Environ 30(3):413–427CrossRefGoogle Scholar
  4. Berdahl P, Bretz S (1997) Preliminary survey of the solar reflectance of cool roofing materials. Energy Build 25(2):149–158CrossRefGoogle Scholar
  5. Bonan G (2002) Temperature and reflectivity pattern about St.Louis, Missouri, using HCMM satellite data. J Clim Appl Meteorol 22:560–571Google Scholar
  6. Gartland L (2011) Heat islands. Understanding and mitigating heat in urban areas. Earthscan, LondonGoogle Scholar
  7. Howard L (1883) The climate of London: deduced from meteorological observations made in the metropolis and at various places around in. Harvey and Darton, LondonGoogle Scholar
  8. Huang J, Akbari H, Taha H (1990) The wind-shielding and shading effects of trees on residential heating and cooling requirements. ASHRAE winter meeting, Atlanta, Georgia, American Society of Heating, Refrigerating and Air-Conditioning Engineers.
  9. Imamura R (1989) Air-surface temperature correlations. Controlling summer heat islands. Lawrence Berkeley Laboratory, BerkeleyGoogle Scholar
  10. Kawashima S, Ishida T, Minomura M, Miwa T (2000) Relations between surface temperature and air temperature on a local scale during winter nights. J Appl Meteorol 39:1570–1579CrossRefGoogle Scholar
  11. Lucchese J (2014) Cool pavements: the essential guide.
  12. Mc Pherson EG (1998) Estimating cost effectiveness of residential yard trees for improving air quality in SAcramento, California, using existing models. Atmos Environ 32(1):75–84CrossRefGoogle Scholar
  13. Mitchell JM (1953) On the cause of instrumentally observed secular temperature trends. J Meteorol 10:244–261CrossRefGoogle Scholar
  14. Mitchell JM (1961) The temperature of cities. Wetherwise 14:244–261Google Scholar
  15. Nowak DJ, Dwyer JF (2000) Understanding the benefits and costs of urban forest ecosystems in Kuser. Handbook of urban and community forestry in the Northeast. Kluwer Academic/Plenum Publishers, New York, pp 11–25CrossRefGoogle Scholar
  16. Oke TR (1981) Canyon geometry and nocturnal urban heat island: comparison of scale model and field observations. J Climatol 1:237–254CrossRefGoogle Scholar
  17. Oke TR (1987) Boundary layer climates. Routledge, New YorkGoogle Scholar
  18. Oke TR, Maxwell GB (1975) Urban heat island dynamics in montreal and vancouver. Atmos Environ 9:191–200CrossRefGoogle Scholar
  19. Pearlmutter D, Bitan A, Berliner P (1999) Microclimate analysis of “compact” urban canyons in an arid zone. Atmos Environ 33:4143–4150CrossRefGoogle Scholar
  20. Pomerantz M, Pon B, Akbari H (2000) The effect of pavement’s temperatures on air temperatures in large cities. Lawrence Berkeley National Laboratory, Berekeley, p 20Google Scholar
  21. Poórová Z, Vranayová Z (2014) Green design effect on people. In: Buildings and environment 2014: conference proceedings, vol 3, 15–17 October 2014, Kroměříž, Czech Republic. University of Technology: Brno, pp 684–693. ISSN 1805-6784Google Scholar
  22. Poórová Z, Káposztásová D, Vranayová Z (2015) Natural and artificial green design environment and its effect on people living and working in it. Bothalia 45(2):23–32. ISSN 0006-8241Google Scholar
  23. Poórová Z, Vranay F, Vranayová Z (2016a) Green roof as a saving technology and creator of microclimate. Visnik Nacionaľnovo Universitetu Ľvivska Politechnika: Serija: Teoria i praktika budivnictva. No. 844, pp 311–315. ISSN 0321-0499Google Scholar
  24. Poórová Z, Vranay F, Vranayová Z (2016b) Effect of different sedum types on green roof temperature. IAHS world congress on housing. Institute for Research and Technological Development in Construction Sciences, Coimbra, pp 1–8. ISBN 978-989-98949-4-5Google Scholar
  25. Poórová Z, Vranay F, Al Hosni MS, Vranayová Z (2016c) Importance of different vegetation used on green roofs in terms of lowering temperature and water retention. In: Procedia engineering: EWaS 2016, vol 162. Elsevier, pp 39–44. ISSN 1877-7058Google Scholar
  26. Renou E (1855) Instructions Météorologiques. Annunaire Societé Étéorologie de France 3(1):73–160Google Scholar
  27. Renou E (1862) Différences de Température entre Paris et Choisy-le-Roi. Annuaire Sociéte Méteorologique de France 10:105–109Google Scholar
  28. Renou E (1868) Differences de Temperature entre la Ville et Champagne. Annuaire Société Météorologie de France 3:83–97Google Scholar
  29. Schmidt W (1917) Zum Einfluss grosser Städte auf das Klima. Naturweissen 5:494–495CrossRefGoogle Scholar
  30. Schmidt W (1929) Die Verteilung der Minimum-temperaturen in der Frostnacht des 12 Mair 1927 in Gemeindegebietiet von Wien. Fortschritter der Landwirtschaft 2(21):681–686Google Scholar
  31. Scott K, Simpson JR, McPherson EG (1999) Effects of tree cover on parking lot microclimate and vehicle emissions. J Arboric 25(3):129–142Google Scholar
  32. Simpson JR (1998) Urban forest impacts on regional cooling and heating energy use: Sacramento county case study. J Arboric 24(4):201–214Google Scholar
  33. United Nations (2002) World urbanization prospects. The 2002 revision. Department of Economic and Social Affairs, Population Division, United Nations, New YorkGoogle Scholar
  34. Voogt JA, Oke TR (1991) Validation of urban canyon radiation model for noctural long-wave radiation fluxes. Bound-Layer Meteorol 54:347–361CrossRefGoogle Scholar
  35. Vukovich FM (1983) An analysis of the ground temperature and reflectivity pattern about St. Louis, Missouri, using HCMM satellite data. J Clim Appl Meteor 22:560–571CrossRefGoogle Scholar
  36. Watkins R, Palmer J, Kolokotroni M, Littlefair P (2002) The London heat island- surface and air temperature measurements in a park and street goges. ASHRAE Trans 108(1):419–427Google Scholar
  37. Wetherhead EC (2000) Ultraviolet radiation. World Meteorological Organization, Ozone and UV Data Center, GenevaGoogle Scholar
  38. Xiao Q, McPherson EG, Simpson JR, Ustin SL (1998) Rainfall interception by Sacramento´s urban forest. J Arboric 24(4):235–244Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Zuzana Poórová
    • 1
  • Zuzana Vranayová
    • 1
  1. 1.Faculty of Civil EngineeringTechnical University of KošiceKošiceSlovakia

Personalised recommendations