Impact of Total Petroleum Hydrocarbons on Human Health

  • Saranya Kuppusamy
  • Naga Raju Maddela
  • Mallavarapu Megharaj
  • Kadiyala Venkateswarlu


Exposure to oil and oil products either directly or indirectly causes severe health issues in humans, and the effects are principally dependent on the nature of contact with the oil spill. Direct exposures include breathing contaminated air (volatile fractions which are emitted as gases) and direct contact with the skin (while walking in contaminated areas). Indirect exposures to oil are due to bathing in contaminated water and eating contaminated food. Human health is badly affected by the contamination of total petroleum hydrocarbons (TPHs), and the effects depend largely on the type of site (land, river, and ocean) of oil spilled. Other contributing factors that affect the human health upon oil exposure include the kind and extent of exposure. Cleaning workers at the oil spill site are at greater risk. Health disorders include skin and eye irritation, breathing and neurologic problems, and stress. TPHs have a strong impact on mental health and induce physical/physiological effects, and they are potentially toxic to genetic, immune, and endocrine systems. Even though the long-term effects of TPHs in humans are not fully understood yet, certain symptoms may persist for some years of postexposure period. Thus, health protection in TPHs-exposed individuals is a matter of serious concern. Health risk assessments have the greatest impact in enabling the detection of any potential exposure-related harmful effects either at the time of exposure or for prolonged periods following the exposure. In this direction, the present chapter provides comprehensive insights into understanding the effects of TPHs on human health.


Health risk assessments Human health effects Oil spills PAHs Routes of TPHs entry TPHs exposure 


  1. Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123Google Scholar
  2. Abedin Z, Louis-Juste M, Stangl M, Field J (2013) The role of base excision repair genes OGG1, APN1 and APN2 in benzo[a]pyrene-7,8-dione induced p53 mutagenesis. Mutat Res 750:121–128CrossRefGoogle Scholar
  3. Aguilera F, Méndez J, Pásaro E, Laffon B (2010) Review on the effects of exposure to spilled oils on human health. J Appl Toxicol 30:291–301Google Scholar
  4. Alexander G (2000) Health risk appraisal. Int Electron J Health Educ 3(Special):133–137Google Scholar
  5. ATSDR (1995) Toxicological profile for naphthalene (update). Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services, AtlantaGoogle Scholar
  6. ATSDR (2018) Agency for Toxic Substances & Disease Registry. Toxic substances portal – Total petroleum hydrocarbons (TPH). Toxicological profile for total petroleum hydrocarbons. Accessed 2 Feb 2019
  7. Baker K, DeJoy D, Wilson M (2007) Using online health risk assessments. J Empl Assist 37:27–36Google Scholar
  8. Bartholomew JC, Salmon AG, Gamper SH, Calvin M (1975) Benzo(a)pyrene effects on mouse epithelial cells in culture. Cancer Res 35:851–856Google Scholar
  9. Bosch X (2003) Exposure to oil spill has detrimental effect on clean-up workers´ health. Lancet 361:147CrossRefGoogle Scholar
  10. Buja A (2011) Polycyclic aromatic hydrocarbons. Accessed 21 Apr 2019
  11. Campbell D, Cox D, Crum J, Foster K, Christie P, Brewster D (1993) Initial effects of the grounding of the tanker Braer on health in Shetland. The Shetland Health Study Group. BMJ 307:1251–1255CrossRefGoogle Scholar
  12. Cherng SH, Lin ST, Lee H (1996) Modulatory effects of polycyclic aromatic hydrocarbons on the mutagenicity of 1-nitropyrene: a structure-activity relationship study. Mutat Res 367:177–185CrossRefGoogle Scholar
  13. Conor G (2017) World – oil spills in Nigeria could kill 16,000 babies a year. Accessed 2 Feb 2019
  14. D’Andrea MA, Reddy GK (2014) Crude oil spill exposure and human health risks. J Occup Environ Med 56:1029–1041CrossRefGoogle Scholar
  15. Davila DR, Davis DP, Campbell K, Cambier JC, Zigmond LA, Burchiel SW (1995) Role of alterations in Ca2+-associated signaling pathways in the immunotoxicity of polycyclic aromatic hydrocarbons. J Toxicol Environ Health A45:101–126CrossRefGoogle Scholar
  16. De Celis R, Feria-Velasco A, Gonzalez-Unzaga M, Torres-Calleja J, Pedron-Nuevo N (2000) Semen quality of workers occupationally exposed to hydrocarbons. Fertil Steril 73:221–228CrossRefGoogle Scholar
  17. Duan L, Naidu R, Liu Y, Dong Z, Mallavarapu M, Herde P, Kuchel T, Semple KT (2016) Comparison of oral bioavailability of benzo[a]pyrene in soils using rat and swine and the implications for human health risk assessment. Environ Int 94:95–102CrossRefGoogle Scholar
  18. Franco SS, Nardocci AC, Günther WMR (2008) PAH biomarkers for human health risk assessment: a review of the state-of-the-art. Cad Saude Publica 24:569–580CrossRefGoogle Scholar
  19. Gestal OJJ, Smyth CE, Figueiras GA, Montes MA (2004) Recollida e limpeza do fuel do Prestige. Avaliación da exposición e danos a saúde en voluntarios e traballadores. Área de Medicina Preventiva e Saúde Pública da Universidade de Santiago de Compostela, Santiago de CompostelaGoogle Scholar
  20. Gina S (2010) Oil spills and human health: lessons from history. Accessed 15 Feb 2019Google Scholar
  21. Goldstein BD, Osofsky HJ, Lichtveld MY (2011) The Gulf oil spill. N Engl J Med 364:1334–1348CrossRefGoogle Scholar
  22. Grattan LM, Roberts S, Mahan WT Jr, McLaughlin PK, Otwell WS, Morris JG Jr (2011) The early psychological impacts of the Deepwater Horizon oil spill on Florida and Alabama communities. Environ Health Perspect 119:838–843CrossRefGoogle Scholar
  23. Hurtig AK, San M (2004) Incidence of childhood leukemia and oil exploitation in the Amazon basin of Ecuador. Int J Occup Environ Health 10:245–250CrossRefGoogle Scholar
  24. Jaligama S, Chen Z, Saravia J, Yadav N, Lomnicki SM, Dugas TR, Cormier SA (2015) Exposure to Deepwater horizon crude oil burnoff particulate matter induces pulmonary inflammation and alters adaptive immune response. Environ Sci Technol 49:8769–8776CrossRefGoogle Scholar
  25. Janjua NZ, Kasi PM, Nawaz H, Farooqui SZ, Khuwaja UB, Najam-ul-Hassan, Jafri SN, Lutfi SA, Kadir MM, Sathiakumar N (2006) Acute health effects of the Tasman Spirit oil spill on residents of Karachi, Pakistan. BMC Public Health 6:84, doi:
  26. Ji K, Seo J, Liu X, Lee J, Lee S, Lee W, Park J, Khim JS, Hong S, Choi Y, Shim WJ, Takeda S, Giesy JP, Choi K (2011) Genotoxicity and endocrine-disruption potentials of sediment near an oil spill site: two years after the Hebei Spirit oil spill. Environ Sci Technol 45:7481–7488CrossRefGoogle Scholar
  27. Jinot J, Bayard S (1996) Respiratory health effects of exposure to environmental tobacco smoke. Rev Environ Health 11:89–100CrossRefGoogle Scholar
  28. Kalé ZK, Andrea C, Iyenemi IK, Donna VS, Wendy HB (2015) Petroleum contaminated water and health symptoms: a cross-sectional pilot study in a rural Nigerian community. Environ Health 14:86CrossRefGoogle Scholar
  29. Kassie F, Anderson LB, Scherber R, Yu N, Lahti D, Upadhyaya P, Hecht SS (2007) Indole-3-carbinol inhibits 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone plus benzo(a)pyrene-induced lung tumorigenesis in A/J mice and modulates carcinogen-induced alterations in protein levels. Cancer Res 67:6502–6511CrossRefGoogle Scholar
  30. Kim K-H, Jahan SA, Kabir E, Brown RJC (2013a) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80CrossRefGoogle Scholar
  31. Kim Y-M, Park J-H, Choi K, Noh SR, Choi Y-H, Cheong H-K (2013b) Burden of disease attributable to the Hebei Spirit oil spill in Taean, Korea. BMJ Open 3:e003334CrossRefGoogle Scholar
  32. Laffon B, Aguilera F, Ríos-Vázquez J, García-Lestón J, Fuchs D, Valdiglesias V, Pásaro E (2013) Endocrine and immunological parameters in individuals involved in Prestige spill cleanup tasks seven years after the exposure. Environ Int 59:103–111CrossRefGoogle Scholar
  33. Lim J, Lawson GW, Nakamura BN, Ortiz L, Hur JA, Kavanagh TJ, Luderer U (2013) Glutathione-deficient mice have increased sensitivity to transplacental benzo(a)pyrene-induced premature ovarian failure and ovarian tumorigenesis. Cancer Res 73:908–917CrossRefGoogle Scholar
  34. Lin CK, Hung HY, Christiani DC, Forastiere F, Lin RT (2017) Lung cancer mortality of residents living near petrochemical industrial complexes: a meta-analysis. Environ Health 16:101CrossRefGoogle Scholar
  35. Linet MS, Yin SN, Gilbert ES, Dores GM, Hayes RB, Vermeulen R, Tian HY, Lan Q, Portengen L, Ji BT, Li GL, Rothman N (2015) A retrospective cohort study of cause-specific mortality and incidence of hematopoietic malignancies in Chinese benzene-exposed workers. Int J Cancer 137:2184–2197CrossRefGoogle Scholar
  36. Liu Y-Z, Roy-Engel AM, Baddoo MC, Flemington EK, Wang G, Wang H (2016) The impact of oil spill to lung health – Insights from an RNA-seq study of human airway epithelial cells. Gene 578:38–51CrossRefGoogle Scholar
  37. Liu X, Jung D, Zhou K, Lee S, Noh K, Khim JS, Giesy JP, Yim UH, Shim WJ, Choi K (2018) Characterization of endocrine disruption potentials of coastal sediments of Taean, Korea employing H295R and MVLN assays – Reconnaissance at 5 years after Hebei Spirit oil spill. Mar Pollut Bull 127:264–272CrossRefGoogle Scholar
  38. Lodovici M, Luceri C, Guglielmi F, Bacci C, Akpan V, Fonnesu ML, Boddi V, Dolara P (2004) Benzo(a)pyrene diolepoxide (BPDE)-DNA adduct levels in leukocytes of smokers in relation to polymorphism of CYP1A1, GSTM1, GSTP1, GSTT1, and mEH. Cancer Epidemiol Biomarkers Prev 13:1342–1348Google Scholar
  39. Lyons RA, Temple JM, Evans D, Fone DL, Palmer SR (1999) Acute health effects of the Sea Empress oil spill. J Epidemiol Community Health 53:306–310CrossRefGoogle Scholar
  40. Maddela NR, Masabanda M, Leiva-Mora M (2015) Novel diesel-oil degrading bacteria and fungi from Ecuadorian Amazon rainforest. Water Sci Technol 71:1554–1561CrossRefGoogle Scholar
  41. Martín CA, Yi Z, Jaeho L, Hyunsuk K, Yue L, Yoko T, Melissa SS, Sally G, Jianjun S, Aldaz CM (2016) DMBA induced mouse mammary tumors display high incidence of activating Pik3caH1047 and loss of function Pten mutations. Oncotarget 7:64289–64299Google Scholar
  42. McNutt MK, Chu S, Lubchenco J, Hunter T, Dreyfus G, Murawski SA, Kennedy DM (2012) Applications of science and engineering to quantify and control the deepwater horizon oil spill. Proc Natl Acad Sci 109:20222–20228CrossRefGoogle Scholar
  43. Mentz G, Robins TG, Batterman S, Naidoo RN (2018) Acute respiratory symptoms associated with short term fluctuations in ambient pollutants among schoolchildren in Durban, South Africa. Environ Pollut 233:529–539CrossRefGoogle Scholar
  44. Merhi ZO (2010) Gulf Coast oil disaster: impact on human reproduction. Fertil Steril 94:1575–1577CrossRefGoogle Scholar
  45. Michael SH, Dana P, Nicholas DA, John F, Diane S (1996) Beyond TPH: health-based evaluation of petroleum hydrocarbon exposures. Regul Toxicol Pharmacol 24:85–101CrossRefGoogle Scholar
  46. Ng SP, Conklin DJ, Bhatnagar A, Bolanowski DD, Lyon J, Zelikoff JT (2009) Prenatal exposure to cigarette smoke induces diet- and sex-dependent dyslipidemia and weight gain in adult murine offspring. Environ Health Perspect 117:1042–1048CrossRefGoogle Scholar
  47. NOAA (2006) National Oceanic and Atmospheric Administration, spill containment methods. Accessed 2 Feb 2019
  48. Olof L, Jonas P (2013) Oil contamination in Ogoniland, Niger Delta. Ambio 42:685–701CrossRefGoogle Scholar
  49. Orta-Martinez M, Rosell-Mele A, Cartro-Sabate M, O’Callaghan-Gordo C, Moraleda-Cibrian N, Mayor P (2018) First evidences of Amazonian wildlife feeding on petroleum-contaminated soils: a new exposure route to petrogenic compounds? Environ Res 160:514–517CrossRefGoogle Scholar
  50. Palinkas LA, Petterson JS, Russell J, Downs MA (1993) Community patterns of psychiatric disorders after the Exxon Valdez oil spill. Am J Psychiatry 150:1517–1523CrossRefGoogle Scholar
  51. Park I-S, Park J-W (2010) A novel total petroleum hydrocarbon fractionation strategy for human health risk assessment for petroleum hydrocarbon-contaminated site management. J Hazard Mater 179:1128–1135CrossRefGoogle Scholar
  52. Perera FP, Tang D, Tu YH, Cruz LA, Borjas M, Bernert T, Whyatt RM (2004) Biomarkers in maternal and newborn blood indicate heightened fetal susceptibility to procarcinogenic DNA damage. Environ Health Perspect 112:1133–1136CrossRefGoogle Scholar
  53. Perez-Pereira M, Tinajero C, Rodriguez MS, Peralbo M, Sabucedo JM (2012) Academic effects of the Prestige oil spill disaster. Span J Psychol 15:1055–1068CrossRefGoogle Scholar
  54. RBCA (2014) Risk-based corrective action tool kit for chemical releases. Accessed 29 Jan 2019
  55. Rodríguez-Trigo G, Zock J-P, Pozo-Rodríguez F, Gómez FP, Monyarch G, Bouso L, Coll MD, Verea HC, Antó JM, Fuster C, Barberà JA, SEPAR-Prestige Study Group (2010) Health changes in fishermen 2 years after clean-up of the Prestige oil spill. Ann Intern Med 153:489–498CrossRefGoogle Scholar
  56. Sabucedo JM, Arce C, Senra C, Seoane G, Vázquez I (2010) Symptomatic profile and health-related quality of life affected by the Prestige catastrophe. Disasters 34:809–820CrossRefGoogle Scholar
  57. San M, Armstrong B, Cordoba JA, Stephens C (2001) Exposures and cancer incidence near oil fields in the Amazon basin of Ecuador. Occup Environ Med 58:517–522CrossRefGoogle Scholar
  58. Sara ML (2009) Chevron fights massive lawsuit in Ecuador. Accessed Mar 2019
  59. Sathiakumar N, Delzell E, Cole P, Brill I, Frisch J, Spivey G (1995) A case-control study of leukemia among petroleum workers. J Occup Environ Med 37:1269–1277CrossRefGoogle Scholar
  60. Schvoerer C, Gourier-Frery C, Ledrans M, Germonneau P, Derrien J, Prat M, et al (2000) Etude épidémologique des troubles de santé survenus à court terme chez les personnes ayant participè au nettoyage des sites pollués par le fioul de l’Erika. Available from:
  61. Steven D (2015) Amazon Watch Blog – Chevron’s “Amazon Chernobyl” in Ecuador: the real irrefutable truths about the company’s toxic dumping and fraud. Accessed 25 Mar 2019
  62. Strelitz J, Engel LS, Kwok RK, Miller AK, Blair A, Sandler DP (2018) Deepwater Horizon oil spill exposures and nonfatal myocardial infarction in the Gulf study. Environ Health 17:69CrossRefGoogle Scholar
  63. Swartjes FA, Rutgers M, Lijzen JPA, Janssen PJCM, Otte PF, Wintersen A, Brand E, Posthuma L (2012) State of the art of contaminated site management in The Netherlands: policy framework and risk assessment tools. Sci Total Environ 427–428:1–10CrossRefGoogle Scholar
  64. Tasker TL, Burgos WD, Piotrowski P, Castillo-Meza L, Blewett TA, Ganow KB, Stallworth A, Delompré PLM, Goss GG, Fowler LB, Vanden Heuvel JP, Dorman F, Warner NR (2018) Environmental and human health impacts of spreading oil and gas wastewater on roads. Environ Sci Technol 52:7081–7091CrossRefGoogle Scholar
  65. Toxic (2014) Toxic substances portal – gasoline, automotive. Accessed 15 Feb 2019
  66. Valdiglesias V, Kilic G, Costa C, Amor-Carro O, Marinas-Pardo L, Ramos-Barbon D, Mendez J, Pasaro E, Laffon B (2012) In vivo genotoxicity assessment in rats exposed to Prestige-like oil by inhalation. J Toxicol Environ Health A 75:756–764CrossRefGoogle Scholar
  67. Wang X-T, Miao Y, Zhang Y, Li Y-C, Wu M-H, Yu G (2013) Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: occurrence, source apportionment and potential human health risk. Sci Total Environ 447:80–89CrossRefGoogle Scholar
  68. Weinhold B (2010) Emergency responder health: what have we learned from past disasters? Environ Health Perspect 118:a346–a350Google Scholar
  69. Yang C, Zhang X (1991) Incidence survey of leukemia in China. Chin Med Sci J 6:65–70Google Scholar
  70. Yen L, McDonald T, Hirschland D, Edington DW (2003) Association between wellness score from a health risk appraisal and prospective medical claims costs. J Occup Environ Med 45:1049–1057CrossRefGoogle Scholar
  71. Yusuf S, Hawken S, Ôunpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Lisheng L (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the interheart study): case-control study. Lancet 364:937–952CrossRefGoogle Scholar
  72. Zhang Z, Yan X, Gao F, Thai P, Wang H, Chen D, Zhou L, Gong D, Li Q, Morawska L, Wang B (2018) Emission and health risk assessment of volatile organic compounds in various processes of a petroleum refinery in the Pearl River Delta, China. Environ Pollut 238:452–461CrossRefGoogle Scholar
  73. Zock JP, Rodríguez-Trigo G, Pozo-Rodríguez F, Barberà JA, Bouso L, Torralba Y, Antó JM, Gómez FP, Fuster C, Verea H, SEPAR-Prestige Study Group (2007) Prolonged respiratory symptoms in clean-up workers of the Prestige oil spill. Am J Respir Crit Care Med 176:610–616CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Centre for Environmental StudiesAnna UniversityChennaiIndia
  2. 2.Facultad de Ciencias de la Salud y Departamento de investigaciónUniversidad Técnica de ManabíPortoviejoEcuador
  3. 3.Global Centre for Environmental RemediationThe University of NewcastleNewcastleAustralia
  4. 4.NelloreIndia

Personalised recommendations